6,038 research outputs found

    Local spectroscopy and atomic imaging of tunneling current, forces and dissipation on graphite

    Get PDF
    Theory predicts that the currents in scanning tunneling microscopy (STM) and the attractive forces measured in atomic force microscopy (AFM) are directly related. Atomic images obtained in an attractive AFM mode should therefore be redundant because they should be \emph{similar} to STM. Here, we show that while the distance dependence of current and force is similar for graphite, constant-height AFM- and STM images differ substantially depending on distance and bias voltage. We perform spectroscopy of the tunneling current, the frequency shift and the damping signal at high-symmetry lattice sites of the graphite (0001) surface. The dissipation signal is about twice as sensitive to distance as the frequency shift, explained by the Prandtl-Tomlinson model of atomic friction.Comment: 4 pages, 4 figures, accepted at Physical Review Letter

    Review and synthesis of problems and directions for large scale geographic information system development

    Get PDF
    Problems and directions for large scale geographic information system development were reviewed and the general problems associated with automated geographic information systems and spatial data handling were addressed

    Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer

    Get PDF
    Colorectal cancer is initiated in colonic crypts. A succession of genetic mutations or epigenetic changes can lead to homeostasis in the crypt being overcome, and subsequent unbounded growth. We consider the dynamics of a single colorectal crypt by using a compartmental approach [Tomlinson IPM, Bodmer WF (1995) Proc Natl Acad Sci USA 92: 11130-11134], which accounts for populations of stem cells, differential cells, and transit cells. That original model made the simplifying assumptions that each cell popuation divides synchronously, but we relax these assumptions by adopting an age-structured approach that models asynchronous cell division, and by using a continuum model. We discuss two mechanims that could regulate the growth of cell numbers and maintain the equilibrium that is normally observed in the crypt. The first will always maintain an equilibrium for all parameter values, whereas the second can allow unbounded proliferation if the net per capita growth rates are large enough. Results show that an increase in cell renewal, which is equivalent to a failure of programmed cell death or of differentiation, can lead to the growth of cancers. The second model can be used to explain the long lag phases in tumor growth, during which news, higher equilibria are reached, before unlimited growth in cell number ensues

    Elevating crop disease resistance with cloned genes

    Get PDF
    Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO2 emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree

    HIV infection significantly reduces lipoprotein lipase which remains low after 6 months of antiretroviral therapy

    Get PDF
    Purpose of the study Fractional clearance rate of apolipoprotein B100-containing lipoproteins is reduced in HIV infection before and after antiretroviral (ARV) treatment [1]. We compared lipoprotein lipase (LPL) activity and gene expression in HIV-positive subjects before and 6 months after ARV with HIV-negative controls. Methods Fasting blood post heparin total and hepatic lipase activity,adiponectin, leptin, insulin, glucose, and lipid measurementswere made in 32 HIV-infected and 15 HIVnegative controls. LPL was estimated by subtractinghepatic lipase from total lipase. Adiponectin, LPL andhormone sensitive lipase (HSL) gene expression weremeasured from iliac crest subcutaneous fat biopsies.Patients were tested before, and 6 months after randomisation to AZT/3TC (n = 15) or TDF/FTC (n = 17) with EFV.Between-group comparison was by Mann-Whitney andpaired samples by the Wilcoxon signed rank tests. Summary of results There were no differences in gender, ethnicity, baseline BMI, regional fat distribution (whole body DEXA) and visceral (VAT) and subcutaneous fat (SAT) measured by abdominal CT scans between controls and patients. Trunk fat/BMI ratio, VAT and VAT:SAT ratio significantly increased after 6-month ARV therapy (p = 0.01). There were no differences between groups in serum NEFA,HOMA and leptin levels. Selected other results are shown in Table 1. Conclusion Post heparin lipoprotein lipase activity is reduced in HIV and does not return to control levels after 6 months of ARV therapy. AZT-containing regimens are associated with a greater increase in LPL, LPL gene expression and plasma adiponectin than TDF

    Force and energy dissipation variations in non-contact atomic force spectroscopy on composite carbon nanotube systems

    Full text link
    UHV dynamic force and energy dissipation spectroscopy in non-contact atomic force microscopy were used to probe specific interactions with composite systems formed by encapsulating inorganic compounds inside single-walled carbon nanotubes. It is found that forces due to nano-scale van der Waals interaction can be made to decrease by combining an Ag core and a carbon nanotube shell in the Ag@SWNT system. This specific behaviour was attributed to a significantly different effective dielectric function compared to the individual constituents, evaluated using a simple core-shell optical model. Energy dissipation measurements showed that by filling dissipation increases, explained here by softening of C-C bonds resulting in a more deformable nanotube cage. Thus, filled and unfilled nanotubes can be discriminated based on force and dissipation measurements. These findings have two different implications for potential applications: tuning the effective optical properties and tuning the interaction force for molecular absorption by appropriately choosing the filling with respect to the nanotube.Comment: 22 pages, 6 figure

    Contact and Friction of Nano-Asperities: Effects of Adsorbed Monolayers

    Full text link
    Molecular dynamics simulations are used to study contact between a rigid, nonadhesive, spherical tip with radius of order 30nm and a flat elastic substrate covered with a fluid monolayer of adsorbed chain molecules. Previous studies of bare surfaces showed that the atomic scale deviations from a sphere that are present on any tip constructed from discrete atoms lead to significant deviations from continuum theory and dramatic variability in friction forces. Introducing an adsorbed monolayer leads to larger deviations from continuum theory, but decreases the variations between tips with different atomic structure. Although the film is fluid, it remains in the contact and behaves qualitatively like a thin elastic coating except for certain tips at high loads. Measures of the contact area based on the moments or outer limits of the pressure distribution and on counting contacting atoms are compared. The number of tip atoms making contact in a time interval grows as a power of the interval when the film is present and logarithmically with the interval for bare surfaces. Friction is measured by displacing the tip at a constant velocity or pulling the tip with a spring. Both static and kinetic friction rise linearly with load at small loads. Transitions in the state of the film lead to nonlinear behavior at large loads. The friction is less clearly correlated with contact area than load.Comment: RevTex4, 17 pages, 13 figure

    An investigation into CLIL-related sections of EFL coursebooks : issues of CLIL inclusion in the publishing market

    Get PDF
    The current ELT global coursebook market has embraced CLIL as a weak form of bilingual education and an innovative component to include in General English coursebooks for EFL contexts. In this paper I investigate how CLIL is included in ELT coursebooks aimed at teenaged learners, available to teachers in Argentina. My study is based on the content analysis of four series which include a section advertised as CLIL-oriented. Results suggest that such sections are characterised by (1) little correlation between featured subject specific content and school curricula in L1, (2) oversimplification of contents, and (3) dominance of reading skills development and lower-order thinking tasks. Through this study, I argue that CLIL components become superficial supplements rather than a meaningful attempt to promote weak forms of bilingual education
    • …
    corecore