141 research outputs found

    Fat Is Consistently Present within the Plantar Muscular Space of the Human Foot—An Anatomical Study

    Get PDF
    Background and Objectives: The foot comprises of active contractile and passive connective tissue components, which help maintain stability and facilitate movement during gait. The role of age- or pathology-related degeneration and the presence of fat within muscles in foot function and pain remains unclear. The existence of fat has to date not been quantified or compared between individuals according to age, sex, side or subregion. Materials and Methods: 18 cadaveric feet (mean age 79 years) were sectioned sagittally and photographed bilaterally. Fat in the plantar muscular space of the foot (PMSF) was quantified through the previously validated manual fat quantification method, which involved observing photographs of each section and identifying regions using OsiriX. Fat volume and percentage was calculated using a modified Cavalieri’s method. Results: All feet had fat located within the PMSF, averaging 25.8% (range, 16.5–39.4%) of the total PMSF volume. The presence of fat was further confirmed with plastination and confocal microscopy. Conclusions: These findings suggest that fat within the PMSF is a consistent but highly variable finding in elderly cohorts. Fat within the foot muscles may need to be considered a norm when comparing healthy and non-healthy subjects, and for therapeutic interventions to the foot. Further work is required to understand in detail the morphological and mechanical presence of fat in the foot, and compare these findings with pathological cohorts, such as sarcopenia. Additionally, future work should investigate if fat may compensate for the degeneration of the intrinsic muscles of the foot, with implications for both the use of orthotics and pain management

    Fat Is Consistently Present within the Plantar Muscular Space of the Human Foot: An Anatomical Study

    Get PDF
    Background and Objectives: The foot comprises of active contractile and passive connective tissue components, which help maintain stability and facilitate movement during gait. The role of age- or pathology-related degeneration and the presence of fat within muscles in foot function and pain remains unclear. The existence of fat has to date not been quantified or compared between individuals according to age, sex, side or subregion. Materials and Methods: 18 cadaveric feet (mean age 79 years) were sectioned sagittally and photographed bilaterally. Fat in the plantar muscular space of the foot (PMSF) was quantified through the previously validated manual fat quantification method, which involved observing photographs of each section and identifying regions using OsiriX. Fat volume and percentage was calculated using a modified Cavalieri’s method. Results: All feet had fat located within the PMSF, averaging 25.8% (range, 16.5–39.4%) of the total PMSF volume. The presence of fat was further confirmed with plastination and confocal microscopy. Conclusions: These findings suggest that fat within the PMSF is a consistent but highly variable finding in elderly cohorts. Fat within the foot muscles may need to be considered a norm when comparing healthy and non-healthy subjects, and for therapeutic interventions to the foot. Further work is required to understand in detail the morphological and mechanical presence of fat in the foot, and compare these findings with pathological cohorts, such as sarcopenia. Additionally, future work should investigate if fat may compensate for the degeneration of the intrinsic muscles of the foot, with implications for both the use of orthotics and pain management

    In Defence of the Hearing? : Emerging Geographies of Publicness, Materiality, Access and Communication in Court Hearings

    Get PDF
    The shift towards dispute resolution taking place outside traditional legal arenas is fundamentally changing the relationship between space and law, presenting legal geography with pressing new research opportunities. This paper explores how the emerging geographies of publicness, materiality, access to justice and communication shed light on the consequences of alternative and online dispute resolution. Crucially, these consequences raise urgent interdisciplinary questions for geography and law. We set out these questions and suggest that legal geography will be best placed to address them by working through some of the practical, applied ramifications of its concepts and perspectives

    Inherent and benzo[a]pyrene-induced differential aryl hydrocarbon receptor signaling greatly affects life span, atherosclerosis, cardiac gene expression, and body and heart growth in mice

    Get PDF
    Little is known of the environmental factors that initiate and promote disease. The aryl hydrocarbon receptor (AHR) is a key regulator of xenobiotic metabolism and plays a major role in gene/environment interactions. The AHR has also been demonstrated to carry out critical functions in development and disease. A qualitative investigation into the contribution by the AHR when stimulated to different levels of activity was undertaken to determine whether AHR-regulated gene/environment interactions are an underlying cause of cardiovascular disease. We used two congenic mouse models differing at the Ahr gene, which encodes AHRs with a 10-fold difference in signaling potencies. Benzo[a]pyrene (BaP), a pervasive environmental toxicant, atherogen, and potent agonist for the AHR, was used as the environmental agent for AHR activation. We tested the hypothesis that activation of the AHR of different signaling potencies by BaP would have differential effects on the physiology and pathology of the mouse cardiovascular system. We found that differential AHR signaling from an exposure to BaP caused lethality in mice with the low-affinity AHR, altered the growth rates of the body and several organs, induced atherosclerosis to a greater extent in mice with the high-affinity AHR, and had a huge impact on gene expression of the aorta. Our studies also demonstrated an endogenous role for AHR signaling in regulating heart size. We report a gene/environment interaction linking differential AHR signaling in the mouse to altered aorta gene expression profiles, changes in body and organ growth rates, and atherosclerosis

    Design, Synthesis, and Evaluation of Lung-Retentive Prodrugs for Extending the Lung Tissue Retention of Inhaled Drugs

    Get PDF
    A major limitation of pulmonary delivery is that drugs can exhibit suboptimal pharmacokinetic profiles resulting from rapid elimination from the pulmonary tissue. This can lead to systemic side effects and a short duration of action. A series of dibasic dipeptides attached to the poorly lung-retentive muscarinic M3 receptor antagonist piperidin-4-yl 2-hydroxy-2,2-diphenylacetate (1) through a pH-sensitive-linking group have been evaluated. Extensive optimization resulted in 1-(((R)-2-((S)-2,6-diaminohexanamido)-3,3-dimethylbutanoyl)oxy)ethyl 4-(2-hydroxy-2,2-diphenylacetoxy)piperidine-1-carboxylate (23), which combined very good in vitro stability and very high rat lung binding. Compound 23 progressed to pharmacokinetic studies in rats, where, at 24 h post dosing in the rat lung, the total lung concentration of 23 was 31.2 μM. In addition, high levels of liberated drug 1 were still detected locally, demonstrating the benefit of this novel prodrug approach for increasing the apparent pharmacokinetic half-life of drugs in the lungs following pulmonary dosing

    Thymic epithelial cell fate and potency in early organogenesis assessed by single cell transcriptional and functional analysis

    Get PDF
    During development, cortical (c) and medullary (m) thymic epithelial cells (TEC) arise from the third pharyngeal pouch endoderm. Current models suggest that within the thymic primordium most TEC exist in a bipotent/common thymic epithelial progenitor cell (TEPC) state able to generate both cTEC and mTEC, at least until embryonic day 12.5 (E12.5) in the mouse. This view, however, is challenged by recent transcriptomics and genetic evidence. We therefore set out to investigate the fate and potency of TEC in the early thymus. Here using single cell (sc) RNAseq we identify a candidate mTEC progenitor population at E12.5, consistent with recent reports. Via lineage-tracing we demonstrate this population as mTEC fate-restricted, validating our bioinformatics prediction. Using potency analyses we also establish that most E11.5 and E12.5 progenitor TEC are cTEC-fated. Finally we show that overnight culture causes most if not all E12.5 cTEC-fated TEPC to acquire functional bipotency, and provide a likely molecular mechanism for this changed differentiation potential. Collectively, our data overturn the widely held view that a common TEPC predominates in the E12.5 thymus, showing instead that sublineage-primed progenitors are present from the earliest stages of thymus organogenesis but that these early fetal TEPC exhibit cell-fate plasticity in response to extrinsic factors. Our data provide a significant advance in the understanding of fetal thymic epithelial development and thus have implications for thymus-related clinical research, in particular research focussed on generating TEC from pluripotent stem cells

    A Novel Test for Gene-Ancestry Interactions in Genome-Wide Association Data

    Get PDF
    Genome-wide association study (GWAS) data on a disease are increasingly available from multiple related populations. In this scenario, meta-analyses can improve power to detect homogeneous genetic associations, but if there exist ancestry-specific effects, via interactions on genetic background or with a causal effect that co-varies with genetic background, then these will typically be obscured. To address this issue, we have developed a robust statistical method for detecting susceptibility gene-ancestry interactions in multi-cohort GWAS based on closely-related populations. We use the leading principal components of the empirical genotype matrix to cluster individuals into “ancestry groups” and then look for evidence of heterogeneous genetic associations with disease or other trait across these clusters. Robustness is improved when there are multiple cohorts, as the signal from true gene-ancestry interactions can then be distinguished from gene-collection artefacts by comparing the observed interaction effect sizes in collection groups relative to ancestry groups. When applied to colorectal cancer, we identified a missense polymorphism in iron-absorption gene CYBRD1 that associated with disease in individuals of English, but not Scottish, ancestry. The association replicated in two additional, independently-collected data sets. Our method can be used to detect associations between genetic variants and disease that have been obscured by population genetic heterogeneity. It can be readily extended to the identification of genetic interactions on other covariates such as measured environmental exposures. We envisage our methodology being of particular interest to researchers with existing GWAS data, as ancestry groups can be easily defined and thus tested for interactions
    corecore