310 research outputs found

    Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer

    Get PDF
    BACKGROUND: The discovery of ERG/ETV1 gene rearrangements and PTEN gene loss warrants investigation in a mechanism-based prognostic classification of prostate cancer (PCa). The study objective was to evaluate the potential clinical significance and natural history of different disease categories by combining ERG/ETV1 gene rearrangements and PTEN gene loss status. METHODS: We utilised fluorescence in situ hybridisation (FISH) assays to detect PTEN gene loss and ERG/ETV1 gene rearrangements in 308 conservatively managed PCa patients with survival outcome data. RESULTS: ERG/ETV1 gene rearrangements alone and PTEN gene loss alone both failed to show a link to survival in multivariate analyses. However, there was a strong interaction between ERG/ETV1 gene rearrangements and PTEN gene loss (P<0.001). The largest subgroup of patients (54%), lacking both PTEN gene loss and ERG/ETV1 gene rearrangements comprised a 'good prognosis' population exhibiting favourable cancer-specific survival (85.5% alive at 11 years). The presence of PTEN gene loss in the absence of ERG/ETV1 gene rearrangements identified a patient population (6%) with poorer cancer-specific survival that was highly significant (HR=4.87, P<0.001 in multivariate analysis, 13.7% survival at 11 years) when compared with the 'good prognosis' group. ERG/ETV1 gene rearrangements and PTEN gene loss status should now prospectively be incorporated into a predictive model to establish whether predictive performance is improved. CONCLUSIONS: Our data suggest that FISH studies of PTEN gene loss and ERG/ETV1 gene rearrangements could be pursued for patient stratification, selection and hypothesis-generating subgroup analyses in future PCa clinical trials and potentially in patient management

    Role of TMPRSS2-ERG Gene Fusion in Negative Regulation of PSMA Expression

    Get PDF
    Prostate specific membrane antigen (PSMA) is overexpressed in prostatic adenocarcinoma (CaP), and its expression is negatively regulated by androgen stimulation. However, it is still unclear which factors are involved in this downregulation. TMPRSS2-ERG fusion is the most common known gene rearrangement in prostate carcinoma. Androgen stimulation can increase expression of the TMPRSS2-ERG fusion in fusion positive prostate cancer cells. The purpose of this investigation is to determine whether PSMA expression can be regulated by the TMPRSS2-ERG gene fusion. We employed two PSMA positive cell lines: VCaP cells, which harbor TMPRSS2-ERG fusion, and LNCaP cells, which lack the fusion. After 24 hours of androgen treatment, TMPRSS2-ERG mRNA level was increased in VCaP cells. PSMA mRNA level was dramatically decreased in VCaP cells, while it only has moderate change in LNCaP cells. Treatment with the androgen antagonist flutamide partially restored PSMA expression in androgen-treated VCaP cells. Knocking down ERG by siRNA in VCaP cells enhances PSMA expression both in the presence and absence of synthetic androgen R1881. Overexpressing TMPRSS2-ERG fusions in LNCaP cells downregulated PSMA both in the presence or absence of R1881, while overexpressing wild type ERG did not. Using PSMA-based luciferase reporter assays, we found TMPRSS2-ERG fusion can inhibit PSMA activity at the transcriptional level. Our data indicated that downregulation of PSMA in androgen-treated VCaP cells appears partially mediated by TMPRSS2-ERG gene fusion

    The nonlinear time-dependent response of isotactic polypropylene

    Full text link
    Tensile creep tests, tensile relaxation tests and a tensile test with a constant rate of strain are performed on injection-molded isotactic polypropylene at room temperature in the vicinity of the yield point. A constitutive model is derived for the time-dependent behavior of semi-crystalline polymers. A polymer is treated as an equivalent network of chains bridged by permanent junctions. The network is modelled as an ensemble of passive meso-regions (with affine nodes) and active meso-domains (where junctions slip with respect to their positions in the bulk medium with various rates). The distribution of activation energies for sliding in active meso-regions is described by a random energy model. Adjustable parameters in the stress--strain relations are found by fitting experimental data. It is demonstrated that the concentration of active meso-domains monotonically grows with strain, whereas the average potential energy for sliding of junctions and the standard deviation of activation energies suffer substantial drops at the yield point. With reference to the concept of dual population of crystalline lamellae, these changes in material parameters are attributed to transition from breakage of subsidiary (thin) lamellae in the sub-yield region to fragmentation of primary (thick) lamellae in the post-yield region of deformation.Comment: 29 pages, 12 figure

    Fusion in the ETS gene family and prostate cancer

    Get PDF
    It has recently been shown that the majority of prostate cancers harbour a chromosomal rearrangement that fuses the gene for an androgen-regulated prostate-specific serine protease, TMPRSS2, with a member of the ETS family of transcription factors, most commonly ERG. These are among the most common genetic alterations in any human solid tumour. This knowledge may provide us with clues to prostate carcinogenesis, and may lead to the development of important molecular-based biomarkers for patients with localised prostate cancer. The most common variant is fusion between the 5′-untranslated region of TMPRSS2 and the 3′ region of ERG. However, over 20 other fusion variants have now been described (involving over 10 different genes) and the number of variants continues to grow. Fusion products can be identified by several techniques, including FISH, RT–PCR, and expression profiling using exon arrays. The protein products associated with the fusion transcripts have not been characterised, and the phenotypic expression of the various products of gene fusion on prostate cancer histology, or on the clinical course of cancer, are not yet understood. Several early cohort studies suggest that the presence of the TMPRSS2:ERG fusion product is associated with relatively poor cancer-specific survival. Studies that examine how individual variants and their associated phenotypes affect prostate cancer presentation and progression are required

    Modulation of Androgen Receptor Signaling in Hormonal Therapy-Resistant Prostate Cancer Cell Lines

    Get PDF
    Background: Prostate epithelial cells depend on androgens for survival and function. In (early) prostate cancer (PCa) androgens also regulate tumor growth, which is exploited by hormonal therapies in metastatic disease. The aim of the present study was to characterize the androgen receptor (AR) response in hormonal therapy-resistant PC346 cells and identify potential disease markers. Methodology/Principal Findings: Human 19K oligoarrays were used to establish the androgen-regulated expression profile of androgen-responsive PC346C cells and its derivative therapy-resistant sublines: PC346DCC (vestigial AR levels), PC346Flu1 (AR overexpression) and PC346Flu2 (T877A AR mutation). In total, 107 transcripts were differentially-expressed in PC346C and derivatives after R1881 or hydroxyflutamide stimulations. The AR-regulated expression profiles reflected the AR modifications of respective therapy-resistant sublines: AR overexpression resulted in stronger and broader transcriptional response to R1881 stimulation, AR down-regulation correlated with deficient response of AR-target genes and the T877A mutation resulted in transcriptional response to both R1881 and hydroxyflutamide. This AR-target signature was linked to multiple publicly available cell line and tumor derived PCa databases, revealing that distinct functional clusters were differentially modulated during PCa progression. Differentiation and secretory functions were up-regulated in primary PCa but repressed i

    Testing mutual exclusivity of ETS rearranged prostate cancer

    Get PDF
    Prostate cancer is a clinically heterogeneous and multifocal disease. More than 80% of patients with prostate cancer harbor multiple geographically discrete cancer foci at the time of diagnosis. Emerging data suggest that these foci are molecularly distinct consistent with the hypothesis that they arise as independent clones. One of the strongest arguments is the heterogeneity observed in the status of E26 transformation specific (ETS) rearrangements between discrete tumor foci. The clonal evolution of individual prostate cancer foci based on recent studies demonstrates intertumoral heterogeneity with intratumoral homogeneity. The issue of multifocality and interfocal heterogeneity is important and has not been fully elucidated due to lack of the systematic evaluation of ETS rearrangements in multiple tumor sites. The current study investigates the frequency of multiple gene rearrangements within the same focus and between different cancer foci. Fluorescence in situ hybridization (FISH) assays were designed to detect the four most common recurrent ETS gene rearrangements. In a cohort of 88 men with localized prostate cancer, we found ERG, ETV1, and ETV5 rearrangements in 51% (44/86), 6% (5/85), and 1% (1/86), respectively. None of the cases demonstrated ETV4 rearrangements. Mutual exclusiveness of ETS rearrangements was observed in the majority of cases; however, in six cases, we discovered multiple ETS or 5′ fusion partner rearrangements within the same tumor focus. In conclusion, we provide further evidence for prostate cancer tumor heterogeneity with the identification of multiple concurrent gene rearrangements

    Association of TMPRSS2-ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer

    Get PDF
    Background: The presence of the TMPRSS2-ERG fusion gene in prostate tumors has recently been associated with an aggressive phenotype, as well as recurrence and death from prostate cancer. These associations suggest the hypothesis that the gene fusion may be used as a prognostic indicator for prostate cancer. Methods: In this study, fluorescent in situ hybridization (FISH) assays were used to assess TMPRSS2-ERG fusion status in a group of 214 prostate cancer cases from two population-based studies. The FISH assays were designed to detect both fusion type (deletion vs. translocation) and the number of fusion copies (single vs. multiple). Genotyping of four ERG and one TMPRSS2 SNPs using germline DNA was also performed in a sample of the cases (n = 127). Results: Of the 214 tumors scored for the TMPRSS2-ERG fusion, 64.5% were negative and 35.5% were positive for the fusion. Cases with the TMPRSS2-ERG fusion did not exhibit reduced prostate cancer survival (HR = 0.92, 95% CI = 0.22-3.93), nor was there a significant difference in causespecific survival when stratifying by translocation or deletion (HR = 0.84, 95% CI = 0.23-3.12) or by the number of retained fusion copies (HR = 1.22, 95% CI = .45-3.34). However, evidence for reduced prostate cancer-specific survival was apparent in those cases whose tumor had multiple copies of the fusion. The variant T allele of the TMPRSS2 SNP, rs12329760, was positively associated with TMPRSS2-ERG fusion by translocation (p = 0.05) and with multiple copies of the gene fusion (p = 0.03). Conclusion: If replicated, the results presented here may provide insight into the mechanism by which the TMPRSS2-ERG gene fusion arises and also contribute to diagnostic evaluations for determining the subset of men who will go on to develop metastatic prostate cancer.This work was supported by NIH grants RO1 CA56678, RO1 CA114524, and P50 CA97186; additional support was provided by the Fred Hutchinson Cancer Research Center and the Intramural Program of the National Human Genome Research Institute

    A Tissue Biomarker Panel Predicting Systemic Progression after PSA Recurrence Post-Definitive Prostate Cancer Therapy

    Get PDF
    Many men develop a rising PSA after initial therapy for prostate cancer. While some of these men will develop a local or metastatic recurrence that warrants further therapy, others will have no evidence of disease progression. We hypothesized that an expression biomarker panel can predict which men with a rising PSA would benefit from further therapy.A case-control design was used to test the association of gene expression with outcome. Systemic (SYS) progression cases were men post-prostatectomy who developed systemic progression within 5 years after PSA recurrence. PSA progression controls were matched men post-prostatectomy with PSA recurrence but no evidence of clinical progression within 5 years. Using expression arrays optimized for paraffin-embedded tissue RNA, 1021 cancer-related genes were evaluated-including 570 genes implicated in prostate cancer progression. Genes from 8 previously reported marker panels were included. A systemic progression model containing 17 genes was developed. This model generated an AUC of 0.88 (95% CI: 0.84-0.92). Similar AUCs were generated using 3 previously reported panels. In secondary analyses, the model predicted the endpoints of prostate cancer death (in SYS cases) and systemic progression beyond 5 years (in PSA controls) with hazard ratios 2.5 and 4.7, respectively (log-rank p-values of 0.0007 and 0.0005). Genes mapped to 8q24 were significantly enriched in the model.Specific gene expression patterns are significantly associated with systemic progression after PSA recurrence. The measurement of gene expression pattern may be useful for determining which men may benefit from additional therapy after PSA recurrence

    WNT signalling in prostate cancer

    Get PDF
    Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer

    Evaluation of a short RNA within Prostate Cancer Gene 3 in the predictive role for future cancer using non-malignant prostate biopsies.

    Get PDF
    BACKGROUND: Prostate Cancer 3 (PCA3) is a long non-coding RNA (ncRNA) upregulated in prostate cancer (PCa). We recently identified a short ncRNA expressed from intron 1 of PCA3. Here we test the ability of this ncRNA to predict the presence of cancer in men with a biopsy without PCa. METHODS: We selected men whose initial biopsy did not identify PCa and selected matched cohorts whose subsequent biopsies revealed PCa or benign tissue. We extracted RNA from the initial biopsy and measured PCA3-shRNA2, PCA3 and PSA (qRT-PCR). RESULTS: We identified 116 men with and 94 men without an eventual diagnosis of PCa in 2-5 biopsies (mean 26 months), collected from 2002-2008. The cohorts were similar for age, PSA and surveillance period. We detected PSA and PCA3-shRNA2 RNA in all samples, and PCA3 RNA in 90% of biopsies. The expression of PCA3 and PCA3-shRNA2 were correlated (Pearson's r = 0.37, p<0.01). There was upregulation of PCA3 (2.1-fold, t-test p = 0.02) and PCA3-shRNA2 (1.5-fold) in men with PCa on subsequent biopsy, although this was not significant for the latter RNA (p = 0.2). PCA3 was associated with the future detection of PCa (C-index 0.61, p = 0.01). This was not the case for PCA3-shRNA2 (C-index 0.55, p = 0.2). CONCLUSIONS: PCA3 and PCA3-shRNA2 expression are detectable in historic biopsies and their expression is correlated suggesting co-expression. PCA3 expression was upregulated in men with PCa diagnosed at a future date, the same did not hold for PCA3-shRNA2. Futures studies should explore expression in urine and look at a time course between biopsy and PCa detection
    • …
    corecore