200 research outputs found

    Kunstig reproduktion af ål: Roe II og IIB

    Get PDF

    Baltic cod reproduction in the Gotland Basin: annual variability and possible causes

    Get PDF
    Baltic cod spawning takes place in the deep basins and reproduction success is mainly related to environmental conditions (salinity and oxygen regimes, i.e. the 'reproduction volume'). Due to the Baltic Sea heterogeneity, cod reproduction success in the Southem and Centrat Baltic spawning grounds can differ significantly. Recent oceanographic changes i.e. decrease of water exchange and stagnation, as weil as a strong reduction of spawning stock caused the diminishing of the reproduction potential of the Gotland spawning grounds. The Gotland spawning grounds belong to four main cod spawning sites in the Baltic and historical analyses revealed that abundant generations of Baltic cod were produced when successful cod reproduction took place also in the Gotland Basin. Analyses of revised reproduction volume estimates for the Gotland Basin taking into account the spatial structure of hydrology in the basin during stagnation and aeration periods reveals high seasonal and inter-annual variability. To describe changes of abundance and distribution of the spawning stock and the recruits in relation to hydrographic conditions, results from trawl surveys carried out in 1975-1998 in the Gotland Deep are analyzed. In this analysis, the reproduction volume is used as a proxy for the environmental conditions

    Manual to determine gonadal maturity of Baltic herring

    Get PDF

    Blood-based gene expression as non-lethal tool for inferring salinity-habitat history of European eel (Anguilla anguilla)

    Get PDF
    The European eel is a facultative catadromous species, meaning that it can skip the freshwater phase or move between marine and freshwater habitats during its continental life stage. Otolith microchemistry, used to determine the habitat use of eel or its salinity history, requires the sacrifice of animals. In this context, blood-based gene expression may represent a non-lethal alternative. In this work, we tested the ability of blood transcriptional profiling to identify the different salinity-habitat histories of European eel. Eels collected from different locations in Norway were classified through otolith microchemistry as freshwater residents (FWR), seawater residents (SWR) or inter-habitat shifters (IHS). We detected 3451 differentially expressed genes from blood by comparing FWR and SWR groups, and then used that subset of genes in a machine learning approach (i.e., random forest) to the extended FWR, SWR, and IHS group. Random forest correctly classified 100% of FWR and SWR and 83% of the IHS using a minimum of 30 genes. The implementation of this non-lethal approach may replace otolith-based microchemistry analysis for the general assessment of life-history tactics in European eels. Overall, this approach is promising for the replacement or reduction of other lethal analyses in determining certain fish traits.publishedVersio
    corecore