14 research outputs found
Charged Rotating Kaluza-Klein Black Holes Generated by G2(2) Transformation
Applying the G_{2(2)} generating technique for minimal D=5 supergravity to
the Rasheed black hole solution, we present a new rotating charged Kaluza-Klein
black hole solution to the five-dimensional Einstein-Maxwell-Chern-Simons
equations. At infinity, our solution behaves as a four-dimensional flat
spacetime with a compact extra dimension and hence describes a Kaluza-Klein
black hole. In particlar, the extreme solution is non-supersymmetric, which is
contrast to a static case. Our solution has the limits to the asymptotically
flat charged rotating black hole solution and a new charged rotating black
string solution.Comment: 24 page
Charged Black Holes in a Rotating Gross-Perry-Sorkin Monopole Background
We present a new class of stationary charged black hole solutions to
five-dimensional Einstein-Maxwell-Chern-Simons theories. We construct the
solutions by utilizing so called the squashing transformation. At infinity, our
solutions behave as a four-dimensional flat spacetime plus a `circle' and hence
describe a Kaluza-Klein black hole. More precisely, our solutions can be viewed
as a charged rotating black hole in a rotating Gross-Perry-Sorkin monopole
background with the black hole rotation induced from the background rotation.Comment: 25 pages, 6 figure
All Vacuum Near-Horizon Geometries in -dimensions with Commuting Rotational Symmetries
We explicitly construct all stationary, non-static, extremal near horizon
geometries in dimensions that satisfy the vacuum Einstein equations, and
that have commuting rotational symmetries. Our work generalizes
[arXiv:0806.2051] by Kunduri and Lucietti, where such a classification had been
given in . But our method is different from theirs and relies on a
matrix formulation of the Einstein equations. Unlike their method, this matrix
formulation works for any dimension. The metrics that we find come in three
families, with horizon topology , or ,
or quotients thereof. Our metrics depend on two discrete parameters specifying
the topology type, as well as continuous parameters. Not all of
our metrics in seem to arise as the near horizon limits of known
black hole solutions.Comment: 22 pages, Latex, no figures, title changed, references added,
discussion of the parameters specifying solutions corrected, amended to match
published versio
G2 Dualities in D=5 Supergravity and Black Strings
Five dimensional minimal supergravity dimensionally reduced on two commuting
Killing directions gives rise to a G2 coset model. The symmetry group of the
coset model can be used to generate new solutions by applying group
transformations on a seed solution. We show that on a general solution the
generators belonging to the Cartan and nilpotent subalgebras of G2 act as
scaling and gauge transformations, respectively. The remaining generators of G2
form a sl(2,R)+sl(2,R) subalgebra that can be used to generate non-trivial
charges. We use these generators to generalize the five dimensional Kerr string
in a number of ways. In particular, we construct the spinning electric and
spinning magnetic black strings of five dimensional minimal supergravity. We
analyze physical properties of these black strings and study their
thermodynamics. We also explore their relation to black rings.Comment: typos corrected (26 pages + appendices, 2 figures
A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric
A key result in the proof of black hole uniqueness in 4-dimensions is that a
stationary black hole that is ``rotating''--i.e., is such that the stationary
Killing field is not everywhere normal to the horizon--must be axisymmetric.
The proof of this result in 4-dimensions relies on the fact that the orbits of
the stationary Killing field on the horizon have the property that they must
return to the same null geodesic generator of the horizon after a certain
period, . This latter property follows, in turn, from the fact that the
cross-sections of the horizon are two-dimensional spheres. However, in
spacetimes of dimension greater than 4, it is no longer true that the orbits of
the stationary Killing field on the horizon must return to the same null
geodesic generator. In this paper, we prove that, nevertheless, a higher
dimensional stationary black hole that is rotating must be axisymmetric. No
assumptions are made concerning the topology of the horizon cross-sections
other than that they are compact. However, we assume that the horizon is
non-degenerate and, as in the 4-dimensional proof, that the spacetime is
analytic.Comment: 24 pages, no figures, v2: footnotes and references added, v3:
numerous minor revision
On the uniqueness of extremal vacuum black holes
On the uniqueness of extremal vacuum blac
Black Holes in Higher Dimensions
We review black hole solutions of higher-dimensional vacuum gravity, and of
higher-dimensional supergravity theories. The discussion of vacuum gravity is
pedagogical, with detailed reviews of Myers-Perry solutions, black rings, and
solution-generating techniques. We discuss black hole solutions of maximal
supergravity theories, including black holes in anti-de Sitter space. General
results and open problems are discussed throughout.Comment: 76 pages, 14 figures; review article for Living Reviews in
Relativity. v2: some improvements and refs adde
Hawking Radiation from Higher-Dimensional Black Holes
We review the quantum field theory description of Hawking radiation from evaporating black holes and summarize what is known about Hawking radiation from black holes in more than four space-time dimensions. In the context of the Large Extra Dimensions scenario, we present the theoretical formalism for all types of emitted fields and a selection of results on the radiation spectra. A detailed analysis of the Hawking fluxes in this case is essential for modelling the evaporation of higher-dimensional black holes at the LHC, whose creation is predicted by low-energy models of quantum gravity. We discuss the status of the quest for black-hole solutions in the context of the Randall-Sundrum brane-world model and, in the absence of an exact metric, we review what is known about Hawking radiation from such black holes
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead