52 research outputs found

    Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study.

    Get PDF
    Obstacle avoidance during locomotion is essential for safe, smooth locomotion. Physiological studies regarding muscle synergy have shown that the combination of a small number of basic patterns produces the large part of muscle activities during locomotion and the addition of another pattern explains muscle activities for obstacle avoidance. Furthermore, central pattern generators in the spinal cord are thought to manage the timing to produce such basic patterns. In the present study, we investigated sensory-motor coordination for obstacle avoidance by the hindlimbs of the rat using a neuromusculoskeletal model. We constructed the musculoskeletal part of the model based on empirical anatomical data of the rat and the nervous system model based on the aforementioned physiological findings of central pattern generators and muscle synergy. To verify the dynamic simulation by the constructed model, we compared the simulation results with kinematic and electromyographic data measured during actual locomotion in rats. In addition, we incorporated sensory regulation models based on physiological evidence of phase resetting and interlimb coordination and examined their functional roles in stepping over an obstacle during locomotion. Our results show that the phase regulation based on interlimb coordination contributes to stepping over a higher obstacle and that based on phase resetting contributes to quick recovery after stepping over the obstacle. These results suggest the importance of sensory regulation in generating successful obstacle avoidance during locomotion

    冠動脈バイパス術患者における術前アスピリン投与中止時期の検討

    Get PDF
    研究科: 千葉大学大学院医学薬学府学位:千大院医薬博甲第医1081号博士(医学)千葉大

    General ion recombination effect in a liquid ionization chamber in high-dose-rate pulsed photon and electron beams

    Get PDF
    Liquid ionization chambers (LICs) are highly sensitive to dose irradiation and have small perturbations because of their liquid-filled sensitive volume. They require a sensitive volume much smaller than conventional air-filled chambers. However, it has been reported that the collection efficiency has dependencies on the dose per pulse and the pulse repetition frequency of a pulsed beam. The purpose of this study was to evaluate in detail the dependency of the ion collection efficiency on the pulse repetition frequency. A microLion (PTW, Freiburg, Germany) LIC was exposed to photon and electron beams from a TrueBeam (Varian Medical Systems, Palo Alto, USA) linear accelerator. The pulse repetition frequency was varied, but the dose per pulse was fixed. A theoretical evaluation of the collection efficiency was performed based on Boag’s theory. Linear correlations were observed between the frequency and the relative collection for all energies of the photon and electron beams. The decrease in the collected charge was within 1% for all the flattened photon and electron beams, and they were 1.1 and 1.8% for the 6 and 10 MV flattening filter-free photon beams, respectively. The theoretical ion collection efficiency was 0.990 for a 10 MV flattened photon beam with a dose rate of 3 Gy·min−1. It is suggested that the collected charge decreased because of the short time intervals of the beam pulse compared with the ion collection time. Thus, it is important to correctly choose the pulse repetition frequency, particularly when flattening filter-free mode is used for absolute dose measurements

    Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study.

    Get PDF
    Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the interlimb coordination appeared in a manner that was similar to the late-type adaptations and after-effects observed in humans. The adaptation results of the robot were then evaluated in comparison with human split-belt treadmill walking, and the adaptation mechanism was clarified from a dynamic viewpoint

    Hysteresis in the metachronal-tripod gait transition of insects: A modeling study

    Get PDF
    Locomotion in biological systems involves various gaits, and hysteresis appears when the gaits change in accordance with the locomotion speed. That is, the gaits vary at different locomotion speeds depending on the direction of speed change. Although hysteresis is a typical characteristic of nonlinear dynamic systems, the underlying mechanism for the hysteresis in gait transitions remains largely unclear. In this study, we construct a neuromechanical model of an insect and investigate the dynamic characteristics of its gait and gait transition. The simulation results show that our insect model produces metachronal and tripod gaits depending on the locomotion speed through dynamic interactions among the body mechanical system, the nervous system, and the environment in a self-organized manner. They also show that it undergoes the metachronal-tripod gait transition with hysteresis by changing the locomotion speed. We examined the hysteresis mechanism in the metachronal-tripod gait transition of insects from a dynamic viewpoint

    Adaptive splitbelt treadmill walking of a biped robot using nonlinear oscillators with phase resetting

    Get PDF
    To investigate the adaptability of a biped robot controlled by nonlinear oscillators with phase resetting based on central pattern generators, we examined the walking behavior of a biped robot on a splitbelt treadmill that has two parallel belts controlled independently. In an experiment, we demonstrated the dynamic interactions among the robot mechanical system, the oscillator control system, and the environment. The robot produced stable walking on the splitbelt treadmill at various belt speeds without changing the control strategy and parameters, despite a large discrepancy between the belt speeds. This is due to modulation of the locomotor rhythm and its phase through the phase resetting mechanism, which induces the relative phase between leg movements to shift from antiphase, and causes the duty factors to be autonomously modulated depending on the speed discrepancy between the belts. Such shifts of the relative phase and modulations of the duty factors are observed during human splitbelt treadmill walking. Clarifying the mechanisms producing such adaptive splitbelt treadmill walking will lead to a better understanding of the phase resetting mechanism in the generation of adaptive locomotion in biological systems and consequently to a guiding principle for designing control systems for legged robots

    Smooth enlargement of human standing sway by instability due to weak reaction floor and noise

    Get PDF
    Human quiet standing is accompanied by body sway. The amplitude of this body sway is known to be larger than would be predicted from simple noise effects, and sway characteristics are changed by neurological disorders. This large sway is thought to arise from nonlinear control with prolonged periods of no control (intermittent control), and a nonlinear control system of this kind has been predicted to exhibit bifurcation. The presence of stability-dependent transition enables dynamic reaction that depends on the stability of the environment, and can explain the change in sway characteristics that accompanies some neurological disorders. This research analyses the characteristics of a system model that induces transition, and discusses whether human standing reflects such a mechanism. In mathematical analysis of system models, (intermittent control-like) nonlinear control with integral control is shown to exhibit Hopf bifurcation. Moreover, from the analytical solution of the system model with noise, noise is shown to work to smooth the enlargement of sway around the bifurcation point. This solution is compared with measured human standing sway on floors with different stabilities. By quantitatively comparing the control parameters between human observation and model prediction, enlargement of sway is shown to appear as predicted by the model analysis

    Data from: Smooth enlargement of human standing sway by instability due to weak reaction floor and noise

    No full text
    Human quiet standing is accompanied by body sway. The amplitude of this body sway is known to be larger than would be predicted from simple noise effects, and sway characteristics are changed by neurological disorders. This large sway is thought to arise from nonlinear control with prolonged periods of no control (intermittent control), and a nonlinear control system of this kind has been predicted to exhibit bifurcation. The presence of stability-dependent transition enables dynamic reaction that depends on the stability of the environment, and can explain the change in sway characteristics that accompanies some neurological disorders. This research analyses the characteristics of a system model that induces transition, and discusses whether human standing reflects such a mechanism. In mathematical analysis of system models, (intermittent control-like) nonlinear control with integral control is shown to exhibit Hopf bifurcation. Moreover, from the analytical solution of the system model with noise, noise is shown to work to smooth the enlargement of sway around the bifurcation point. This solution is compared with measured human standing sway on floors with different stabilities. By quantitatively comparing the control parameters between human observation and model prediction, enlargement of sway is shown to appear as predicted by the model analysis
    corecore