27 research outputs found

    Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53

    Get PDF
    This work was supported by the University of Cambridge; Cancer Research UK (C14303/A17197); Hutchison Whampoa. In addition, MasasN and TO were supported by the Human Frontier Science Program (RGY0078/2010); HK was supported by MEXT KAKENHI (Grant Numbers 25116005 and 26291071); KT was supported by the Japan Society for the Promotion of Science (24–8563).The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared to the classical ‘acute’ p53 binding profile, ‘chronic’ p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory ‘p53 hubs’ where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the ‘lipogenic phenotype’, a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.Publisher PDFPeer reviewe

    Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53.

    Get PDF
    The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared to the classical 'acute' p53 binding profile, 'chronic' p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory 'p53 hubs' where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the 'lipogenic phenotype', a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.This work was supported by the University of Cambridge; Cancer Research UK (C14303/A17197); Hutchison Whampoa. In addition, MasasN and TO were supported by the Human Frontier Science Program (RGY0078/2010); HK was supported by MEXT KAKENHI (Grant Numbers 25116005 and 26291071); KT was supported by the Japan Society for the Promotion of Science (24–8563).This is the final version of the article. It first appeared at http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.100505

    NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence.

    Get PDF
    Senescent cells interact with the surrounding microenvironment achieving diverse functional outcomes. We have recently identified that NOTCH1 can drive 'lateral induction' of a unique senescence phenotype in adjacent cells by specifically upregulating the NOTCH ligand JAG1. Here we show that NOTCH signalling can modulate chromatin structure autonomously and non-autonomously. In addition to senescence-associated heterochromatic foci (SAHF), oncogenic RAS-induced senescent (RIS) cells exhibit a massive increase in chromatin accessibility. NOTCH signalling suppresses SAHF and increased chromatin accessibility in this context. Strikingly, NOTCH-induced senescent cells, or cancer cells with high JAG1 expression, drive similar chromatin architectural changes in adjacent cells through cell-cell contact. Mechanistically, we show that NOTCH signalling represses the chromatin architectural protein HMGA1, an association found in multiple human cancers. Thus, HMGA1 is involved not only in SAHFs but also in RIS-driven chromatin accessibility. In conclusion, this study identifies that the JAG1-NOTCH-HMGA1 axis mediates the juxtacrine regulation of chromatin architecture

    NOTCH1 mediates a switch between two distinct secretomes during senescence

    Get PDF
    Senescence, a persistent form of cell-cycle arrest, is often associated with a diverse secretome, which provides complex functionality for senescent cells within the tissue microenvironment. We show that oncogene-induced senescence is accompanied by a dynamic fluctuation of NOTCH1 activity, which drives a TGF-β-rich secretome, while suppressing the senescence-associated pro-inflammatory secretome through inhibition of C/EBPβ. NOTCH1 and NOTCH1-driven TGF-β contribute to 'lateral induction of senescence' through a juxtacrine NOTCH-JAG1 pathway. In addition, NOTCH1 inhibition during senescence facilitates upregulation of pro-inflammatory cytokines, promoting lymphocyte recruitment and senescence surveillance in vivo. As enforced activation of NOTCH1 signalling confers a near mutually exclusive secretory profile compared with typical senescence, our data collectively indicate that the dynamic alteration of NOTCH1 activity during senescence dictates a functional balance between these two distinct secretomes: one representing TGF-β and the other pro-inflammatory cytokines, highlighting that NOTCH1 is a temporospatial controller of secretome composition.This work was supported by the University of Cambridge, Cancer Research UK and Hutchison Whampoa. The M.N. laboratory is supported by Cancer Research UK Cambridge Institute Core Grant (C14303/A17197). M.H. was supported by CRUK Translational Medicine Research Fellowship and CRUK Clinician Scientist Fellowship (C52489/A19924). This work was also supported by a Wellcome Trust PRF (WT101835) to P.J.L., a Wellcome Trust Senior Fellowship to M.P.W. (108070/Z/15/Z), a Wellcome Trust Training Fellowship to N.J.M. (093964/Z/10/Z), and a Wellcome Trust Intermediate Fellowship (097162/Z/11/Z) to S.S. L.Z. was funded by the German Research Foundation (DFG; grants FOR2314 and SFB685), the Gottfried Wilhelm Leibniz Program, the European Research Council (projects ‘CholangioConcept’), the German Ministry for Education and Research (BMBF) (eMed-Multiscale HCC), the German Universities Excellence Initiative (third funding line: ‘future concept’), the German Center for Translational Cancer Research (DKTK) and the German–Israeli Cooperation in Cancer Research (DKFZ–MOST).This is the author accepted manuscript. The final version is available from Nature Publishing Group at http://dx.doi.org/10.1038/ncb3397

    The datasets for Precise immunofluorescence canceling enables highly multiplexed imaging

    No full text
    Cell states are regulated by responsive signal pathways upon ligand-binding to the receptor and inter-cellular interactions. Thus, high-resolution imaging has been attempted to explore the dynamics of signaling. Recently, multiplexed imaging has been introduced to profile cell state by acquisition of comprehensive spatial protein information in the cells. However, it is still challenging to compromise resolution for visualizing activated signals. Here we developed ‘Precise Emission Canceling Antibody (PECAb)’ attached with erasable fluorescent labeling. PECAbs allow high-resolution sequential imaging using 206 antibodies and it allowed reconstruction of the spatiotemporal dynamics of signaling pathways. Additionally, combining this approach with seq-smFISH can effectively classify cells and identify their signal activation states in human tissue. Overall, the PECAb system serves as a comprehensive platform for analyzing complex cell processes

    Usefulness of an Automatic Quantitative Method for Measuring Regional Cerebral Blood Flow Using 99mTc Ethyl Cysteinate Dimer Brain Uptake Ratio

    No full text
    Objective(s): Improved brain uptake ratio (IBUR), employing 99mTc-ethyl cysteinate dimer (99mTc-ECD), is an automatic non-invasive method for quantitatively measuring regional cerebral blood flow (rCBF). This method was developed by the reconstruction of the theory and linear regression equation, based on rCBF measurement by H215O positron emission tomography. Clarification of differences in rCBF values obtained by Patlak plot (PP) and IBUR method is important for clinical diagnosis during the transition period between these methods. Our purpose in this study was to demonstrate the relationship between rCBF values obtained by IBUR and PP methods and to evaluate the clinical applicability of IBUR method. Methods: The mean CBF (mCBF) and rCBF values in 15 patients were obtained using the IBUR method and compared with PP method values. Results: Overall, mCBF and rCBF values, obtained using these independent techniques, were found to be correlated (r=0.68). The mCBF values obtained by the IBUR method ranged from 18.9 to 44.9 ml/100g/min, whereas those obtained by the PP method ranged from 34.7 to 48.1 ml/100g/min. The rCBF values obtained by the IBUR method ranged from 16.3 to 60.2 ml/100g/min, whereas those obtained by the PP method were within the range of 26.7-58.8 ml/100g/min. Conclusion: The ranges of mCBF and rCBF values, obtained by the IBUR method, were approximately 60% lower than those obtained by the PP method; therefore, this method can be useful for diagnosing lower flow area. Re-analysis of prior PP data, using the IBUR method, could be potentially useful for the clinical follow-up of rCBF
    corecore