7 research outputs found

    Attenuation modified by DIG and dust as seen in M31

    Full text link
    The spatial distribution of dust in galaxies affects the global attenuation, and hence inferred properties, of galaxies. We trace the spatial distribution of dust in five fields (at 0.6-0.9 kpc scale) of M31 by comparing optical attenuation with the total dust mass distribution. We measure the attenuation from the Balmer decrement using Integral Field Spectroscopy and the dust mass from Herschel far-IR observations. Our results show that M31's dust attenuation closely follows a foreground screen model, contrary to what was previously found in other nearby galaxies. By smoothing the M31 data we find that spatial resolution is not the cause for this difference. Based on the emission line ratios and two simple models, we conclude that previous models of dust/gas geometry need to include a weakly or non-attenuated diffuse ionized gas (DIG) component. Due to the variation of dust and DIG scale heights with galactic radius, we conclude that different locations in galaxies will have different vertical distributions of gas and dust and therefore different measured attenuation. The difference between our result in M31 with that found in other nearby galaxies can be explained by our fields in M31 lying at larger galactic radii than the previous studies that focused on the centres of galaxies.Comment: 20 pages, 13 figures, ApJ accepted and in pres

    GASP and MaNGA Surveys Shed Light on the Enigma of the Gas Metallicity Gradients in Disk Galaxies

    Get PDF
    Making use of both MUSE observations of 85 galaxies from the survey GASP (GAs Stripping Phenomena in galaxies with MUSE) and a large sample from MaNGA (Mapping Nearby Galaxies at Apache Point Observatory survey), we investigate the distribution of gas metallicity gradients as a function of stellar mass for local cluster and field galaxies. Overall, metallicity profiles steepen with increasing stellar mass up to 1010.3 M o˙ and flatten out at higher masses. Combining the results from the metallicity profiles and the stellar mass surface density gradients, we propose that the observed steepening is a consequence of local metal enrichment due to in situ star formation during the inside-out formation of disk galaxies. The metallicity gradient-stellar mass relation is characterized by a rather large scatter, especially for 109.8 < M ∗/M o˙ < 1010.5, and we demonstrate that metallicity gradients anti-correlate with the galaxy gas fraction. Focusing on the galaxy environment, at any given stellar mass, cluster galaxies have systematically flatter metallicity profiles than their field counterparts. Many subpopulations coexist in clusters: galaxies with shallower metallicity profiles appear to have fallen into their present host halo sooner and have experienced the environmental effects for a longer time than cluster galaxies with steeper metallicity profiles. Recent galaxy infallers, like galaxies currently undergoing ram pressure stripping, show metallicity gradients more similar to those of field galaxies, suggesting they have not felt the effect of the cluster yet

    GASP XXIII: A jellyfish galaxy as an astrophysical laboratory of the baryonic cycle

    Get PDF
    With MUSE, Chandra, VLA, ALMA and UVIT data from the GASP programme we study the multiphase baryonic components in a jellyfish galaxy (JW100) with a stellar mass 3.2 X 10^{11} M_sun hosting an AGN. We present its spectacular extraplanar tails of ionized and molecular gas, UV stellar light, X-ray and radio continuum emission. This galaxy represents an excellent laboratory to study the interplay between different gas phases and star formation, and the influence of gas stripping, gas heating, and AGN. We analyze the physical origin of the emission at different wavelengths in the tail, in particular in-situ star formation (related to Halpha, CO and UV emission), synchrotron emission from relativistic electrons (producing the radio continuum) and heating of the stripped interstellar medium (ISM) (responsible for the X-ray emission). We show the similarities and differences of the spatial distributions of ionized gas, molecular gas and UV light, and argue that the mismatch on small scales (1kpc) is due to different stages of the star formation process. We present the relation Halpha--X-ray surface brightness, which is steeper for star-forming regions than for diffuse ionised gas regions with high [OI]/Halpha ratio. We propose that ISM heating due to interaction with the intracluster medium (either for mixing, thermal conduction or shocks) is responsible for the X-ray tail, the observed [OI]-excess and the lack of star formation in the northern part of the tail. We also report the tentative discovery in the tail of the most distant (and among the brightest) currently known ULX, a point-like ultraluminous X-ray source commonly originating in a binary stellar system powered either by an intermediate-mass black hole or a magnetized neutron star.Comment: accepted for publication in Ap

    ¹³CO/C¹⁸O Gradients across the Disks of Nearby Spiral Galaxies

    No full text
    We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure 13CO(1-0)/C18O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of 12CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved 13CO/C18O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean 13CO/C18O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the 13CO/C18O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.F.B., M.J., and D.C. acknowledge support from DFG grant BI 1546/1-1. A.H. acknowledges support from the Centre National d’Etudes Spatiales (CNES). A.U. acknowledges support from Spanish MINECO grants FIS2012-32096 and ESP2015-68964. The work of A.K.L. is partially supported by the National Science Foundation under grants No. 1615105 and 1615109. M.R.K. acknowledges support from ARC DP160100695. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This paper makes use of the following ALMA data: ADS/JAO. ALMA #2011.0.00004.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ

    Post-starburst Galaxies in the Centers of Intermediate-redshift Clusters

    No full text
    International audienceWe present results from MUSE spatially resolved spectroscopy of 21 post-starburst galaxies in the centers of eight clusters from z ~ 0.3 to z ~ 0.4. We measure spatially resolved star formation histories (SFHs), the time since quenching (t Q ), and the fraction of stellar mass assembled in the past 1.5 Gyr (μ 1.5). The SFHs display a clear enhancement of star formation prior to quenching for 16 out of 21 objects, with at least 10% (and up to >50%) of the stellar mass being assembled in the past 1.5 Gyr and t Q ranging from less than 100 to ~800 Myr. By mapping t Q and μ 1.5, we analyze the quenching patterns of the galaxies. Most galaxies in our sample have quenched their star formation from the outside in or show a side-to-side/irregular pattern, both consistent with quenching by ram pressure stripping. Only three objects show an inside-out quenching pattern, all of which are at the high-mass end of our sample. At least two of them currently host an active galactic nucleus. In two post-starbursts, we identify tails of ionized gas indicating that these objects had their gas stripped by ram pressure very recently. Post-starburst features are also found in the stripped regions of galaxies undergoing ram pressure stripping in the same clusters, confirming the link between these classes of objects. Our results point to ram pressure stripping as the main driver of fast quenching in these environments, with active galactic nuclei playing a role at high stellar masses
    corecore