15 research outputs found

    The Effects of \u3cem\u3eTithonia diversifolia\u3c/em\u3e on Dairy Cow Performance

    Get PDF
    Southeast, South and Central West are the main milk producing regions in the Brazil. Especially in the states of Minas Gerais, Goias and Sao Paulo, the tropical climate is very characteristic, with hot and rainy summers, and dry winters. Dry winters in these states are characterized by scarcity of pasture herbage mass, which directly influence the volume of milk produced. The high volume of milk produced in summer and low volume of milk produced in winter (i.e. seasonality of production which is about 20% of total milk volume) directly affects dairy farmers by reducing its revenue during dry winters due to a drop in milk yield. In addition, it increases the production costs by offering additional roughage supplements to the cattle (sugarcane fresh plus urea, corn silage or sorghum silage), or by feeding more concentrates and/or greater labour costs. Research evaluating the potential of the Tithonia diversifolia in improving milk yield and quality is extremely limited. This research project seeks to develop tools to understand the potential impact on milk composition and cow performance and to evaluate the significance of its outcomes and to aid in the ongoing development of innovative approaches. The aim of this study is to determine the effects of replacing up to 9.1% of sugarcane fresh and up to 6.3% of concentrates (DM basis) with Tithonia diversifolia fresh fed to lactating dairy cows. It is hypothesized that the initial replacement of a portion of the sugarcane fresh and concentrates (corn grain and soybean meal) with the Tithonia diversifolia fresh would not reduce dairy cow performance

    Enteric methane mitigation strategies in ruminants: a review

    No full text
    Livestock farming in Latin America has been criticized because of its large greenhouse gas (GHG) production resulting from the use of degraded forage and low-efficiency production performance. Agriculture contributes a significant amount of the three main greenhouse gases: methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). Methane has a global warming potential 25 times greater than CO2. Enteric methane is an important greenhouse gas responsible for approximately 15% of global warming. The trend and legal obligation of mitigating greenhouse gas emissions will likely directly influence improved efficiency of livestock systems, including animal nutrition and handling. The development of mitigation strategies and the viability of their practical applications have been researched around the world. Various nutritional strategies to mitigate enteric methane have been studied and developed. All of them differ in terms of viability, cost, and acceptance by the producers. Their adoption should be based on the capacity to reduce methane emissions in association with economic viability and animal performance. Animal performance improvement will be achieved in production systems (mainly those related to efficient forage use) associated with good management of nutrition, health and reproduction. These are important strategies to consolidate Brazil as a food producer to the world, respecting the demands regarding land, water, biodiversity conservation and emission of greenhouse gases.A pecuária da América Latina tem sido criticada por emitir quantidades significativas de gases de efeito estufa (GHG). Tal crítica tem sido fundamentada nos baixos índices zootécnicos verificados em sistemas de exploração animal baseados em pastagens degradadas ou que se encontram abaixo do seu potencial de produção. A agropecuária contribui de forma significativa com a emissão dos três principais GHG: metano (CH4), dióxido de carbono (CO2) e óxido nitroso (NO2). O gás metano apresenta potencial de aquecimento global 25 vezes maior que o CO2. O metano entérico é um importante gás de efeito estufa, que é responsável por aproximadamente 15% do aquecimento global. A tendência ou obrigação legal de mitigar as emissões de GHG influenciará diretamente a necessidade de aumento da eficiência zootécnica nos sistemas pecuários, atrelado ao manejo nutricional dos animais a ser adotado. O desenvolvimento de estratégias de mitigação e a viabilidade da aplicação prática dessas estratégias são áreas atuais de pesquisa em todo o mundo. Existem várias estratégias de nutrição para mitigar metano entérico que têm sido estudados e desenvolvidos. Todos estes têm diferentes viabilidades, custos e possibilidades de serem adotadas pelos produtores. A escolha de qual vai ser utilizado deve basear-se na capacidade de reduzir as emissões de metano associadas com viabilidade econômica e a manutenção do desempenho do animal. O aumento nos índices zootécnicos que serão obtidos em sistemas de produção (principalmente os relacionados ao uso de forragem eficiente) associada a uma boa nutrição, saúde e manejo reprodutivo são estratégias importantes para consolidar o Brasil como um importante produtor de alimentos para o mundo, respeitando as demandas relacionadas ao uso da terra, da água, da conservação da biodiversidade e da emissão de gases de efeito estufa.La industria pecuaria latinoamericana ha sido criticada por la emisión significativa de gases con efecto invernadero (GHG). Dicha crítica se fundamenta en los bajos indicadores zootécnicos observados en los sistemas de producción animal basados en pasturas degradadas o que se encuentran por debajo de su potencial de producción. La industria agropecuaria contribuye de manera significativa con la emisión de los tres principales GHG: metano (CH4), dióxido de carbono (CO2) y óxido nitroso (NO2). El gas metano tiene un potencial de calentamiento global 25 veces mayor que el de CO2. El metano entérico es un importante gas de efecto invernadero, que es responsable de aproximadamente el 15% del calentamiento global. La tendencia o la obligación legal de mitigar las emisiones de GHG tendrá una influencia directa sobre la necesidad del aumento de la eficiencia zootécnica en los sistemas pecuarios relacionado con el manejo nutricional de los animales que deberá ser adoptado. El desarrollo de estrategias de mitigación y la viabilidad de su aplicación práctica representan áreas de investigación alrededor del mundo. Existen diversas estrategias nutricionales que se han estudiado y desarrollado con el fin de mitigar el metano entérico. Dichas estrategias presentan diferentes viabilidades, costos y posibilidades para que sean aceptadas por los productores. La elección de la estrategia de mitigación a ser adoptada deberá estar centrada en la capacidad de reducción de las emisiones de metano asociada con la viabilidad económica y el mantenimiento del desempeño animal. El aumento de los indicadores zootécnicos que se obtendrán en los sistemas de producción (principalmente aquellos que utilicen de manera eficiente el forraje) asociado a una buena nutrición, salud y manejo reproductivo, son estrategias importantes para la consolidación de Brasil como un importante productor de alimentos para el mundo, teniendo en cuenta las demandas relacionadas con el uso del suelo, del agua, la conservación de la biodiversidad y de la emisión de gases con efecto invernadero

    Compositional and structural dynamics of the ruminal microbiota in dairy heifers and its relationship to methane production

    Get PDF
    Heifers emit more enteric methane (CH4) than adult cows and these emissions tend to decrease per unit feed intake as they age. However, common mitigation strategies like expensive high‐quality feeds are not economically feasible for these pre‐production animals. Given its direct role in CH4 production, altering the rumen microbiota is another potential avenue for reducing CH4 production by ruminants. However, to identify effective microbial targets, a better understanding of the rumen microbiota and its relationship to CH4 production across heifer development is needed. Here, we investigate the relationship between rumen bacterial, archaeal, and fungal communities as well as CH4 emissions and a number of production traits in prepubertal (PP), pubertal (PB), and pregnant heifers (PG). Overall, PG heifers emitted the most CH4, followed by PB and PP heifers. The bacterial genus Acetobacter and the archaeal genus Methanobrevibacter were positively associated, while Eubacterium and Methanosphaera were negatively associated with raw CH4 production by heifers. When corrected for dietary intake, both Eubacterium and Methanosphaera remained negatively associated with CH4 production. We suggest that Eubacterium and Methanosphaera represent likely targets for CH4 mitigation efforts in heifers as they were negatively associated with CH4 production and not significantly associated with production traits

    Assessing the impact of rumen microbial communities on methane emissions and production traits in Holstein cows in a tropical climate

    No full text
    The evaluation of how the gut microbiota affects both methane emissions and animal production is necessary in order to achieve methane mitigation without production losses. Toward this goal, the aim of this study was to correlate the rumen microbial communities (bacteria, archaea, and fungi) of high (HP), medium (MP), and low milk producing (LP), as well as dry (DC), Holstein dairy cows in an actual tropical production system with methane emissions and animal production traits. Overall, DC cows emitted more methane, followed by MP, HP and LP cows, although HP and LP cow emissions were similar. Using next-generation sequencing, it was found that bacteria affiliated with Christensenellaceae, Mogibacteriaceae, S24-7, Butyrivibrio, Schwartzia, and Treponema were negatively correlated with methane emissions and showed positive correlations with digestible dry matter intake (dDMI) and digestible organic matter intake (dOMI). Similar findings were observed for archaea in the genus Methanosphaera. The bacterial groups Coriobacteriaceae, RFP12, and Clostridium were negatively correlated with methane, but did not correlate with dDMI and dOMI. For anaerobic fungal communities, no significant correlations with methane or animal production traits were found. Based on these findings, it is suggested that manipulation of the abundances of these microbial taxa may be useful for modulating methane emissions without negatively affecting animal production

    Could the breed composition improve performance and change the enteric methane emissions from beef cattle in a tropical intensive production system?

    No full text
    Crossbreeding has been used to improve performance in beef cattle, however the effects of breed composition on methane (CH4) production, yield and intensity from cattle raised in tropical intensive and integrated systems remain unknown. To assess the impact of breed composition on performance and methane emissions, Nellore (NEL; yr 1: BW = 171.5 ± 19.4 kg; n = 10; yr 2: BW = 215.8 ± 32.3 kg, n = 25) and Angus x Nellore crossbred (AN; yr 1: BW = 214.2 ± 26.4 kg, n = 10; yr 2: BW = 242.5 ± 32.2 kg, n = 25) were compared. The animals grazed on integrated crop-livestock system in the growing phase (stocking rate 2452 kg BW/ha, herbage mass 4,884 kg dry matter (DM)/ha, forage allowance 5.9 kg DM/100kg BW) and then were finished in a feedlot. Steers (n = 8) from each breed composition were randomly selected in each phase to measure CH4 production using a sulfur hexafluoride (SF6) tracer technique and DM intake (DMI) using titanium dioxide. Compared with NEL, AN had both superior total gain and average daily gain (ADG) in the grazing period. The AN presented greater ADG in the feedlot with a shorter finishing period and resulted in greater carcass yield and carcass ADG. Methane production (kg/period) was lower in NEL (19% less) than AN in grazing (P<0.01), and no difference was observed in feedlot. The NEL had less CH4 intensity (CH4/BW) in grazing but greater CH4 per unit of ADG in the feedlot compared to AN. Breed composition did not influence the CH4 yield (CH4/DMI) in either phase, despite the difference in feedlot DMI (kg/day). In conclusion, crossbreeding may be an option to improve performance and reduce the CH4 per ADG in tropical climate conditions, resulting in lower methane emission per kg of meat produced

    An evaluation of the face mask system based on short-term measurements compared with the sulfur hexafluoride (SF6 ) tracer, and respiration chamber techniques for measuring CH4 emissions

    No full text
    The objective of the present study was to compare the short term measurement (30 min/day for 3 days) face mask system (FM), with SF6 tracer and respiration chamber (RC) techniques for measuring CH4 emissions from crossbred (Holstein × Gyr) yearling bulls fed at three intake levels. Data were derived from 17 individuals in a completely randomized design experiment in a repeated measures scheme. Bulls were fed a diet consisting of 59.6% corn silage and 40.4% concentrate on a DM basis at three levels of DM intake (DMI) of 1.2% of BW, 1.8% of BW and ad libitum. After an adaptation period, CH4 emissions were measured first using the SF6 tracer technique, followed by the FM and RC techniques, respectively. Daily CH4 emission (g/day) from bulls differed (P < 0.007) with CH4 measurements techniques, with highest emissions measured using RC (107.9 ± 15.36), followed by FM (103.2 ± 11.86) then SF6 tracer technique (87.9 ± 10.16). The CH4 emissions adjusted for differences in DMI and BW did not differ among techniques, averaging 21.5 g/kg DMI and 0.4 g/kg BW, respectively. Total CH4 emissions (g/day) were positively correlated with DMI as measured by all three techniques (SF6r = 0.93; FM r = 0.93; RC r = 0.96). The concordance correlation coefficient (CCC) for CH4 emission (g/d) were 0.82, 0.82 and 0.74 for comparisons of SF6vs RC, FM vs RC and FM vs SF6, respectively. The day-to-day (21.3%) and animal-to-animal (13.4%) variation in CH4 yield (g/kg DMI) was greater from bulls using the FM technique, compared to SF6 (18.8% and 6.8%, respectively) and RC (12.9% and 7.5%, respectively) techniques. We conclude that the short-term FM technique generated CH4 measurements that were comparable to those estimated using SF6 and chamber techniques across a range of DMI levels. However, the FM method may have limitations in terms of assessing enteric CH4 mitigation strategies that are applied over a short duration to low numbers of animals due to higher animal-to-animal and day-to-day coefficients of variation than either the SF6 or RC techniques

    Green microfinance: the case of the Cresol System in Southern Brazil

    No full text
    Climate change which until recently seemed a luxury for the microfinance sector, now appears to be crucial for the future of the sector. Due to their low adaptive capacity, the millions of MF clients worldwide happen to be the most vulnerable to a changing climate. Adapting previous analysis conducted in Nepal and Bangladesh by Agrawala and Maëlis (2010) to the Brazilian context, in this inductive qualitative study we aim to assess potential synergies between MF and CC actions and what strategies can be harnessed to better respond to CC vulnerabilities at client/MF level. To do so, we investigated the case of the second largest rural microcredit programme in Brazil, Sistema Cresol de Cooperativas de Crédito Rural com Interação Solidária. Albeit important overlaps between Cresol's product envelope and CC strategies exist, there is still room to realise synergies to both mitigate a new potential source of risk to Cresol's portfolio and to increase clients' adaptive capacity

    Improving the accuracy of beef cattle methane inventories in Latin America and Caribbean countries

    No full text
    On-farm methane (CH4) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH4 have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH4 inventories in LAC countries. After outlier's screening, 1100 beef cattle observations from 55 studies were kept in the final dataset (∼ 50 % of the original dataset). Mixed-effects models were fitted with a random effect of study. The whole dataset was split according to DFC into a subset for all-forage (DFC = 100 %), high-forage (94 % ≥ DFC ≥ 54 %), and low-forage (50 % ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of CH4 emission (g d−1), whereas this was feeding level [dry matter intake (DMI) as % of body weight] for CH4 yield (g kg−1 DMI). The newly-developed models were more accurate than IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG were accurate and a feasible option to predict CH4 emission when data on feed intake are not available. Methane yield was not well predicted by any extant equation in contrast to the newly-developed models. The present study delivered new models that may be alternatives for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC countries based either on more or less readily available data
    corecore