94 research outputs found

    The Role of RANK-Ligand Inhibition in Cancer: The Story of Denosumab

    Get PDF
    The bone is a very common site of metastasis in patients with advanced cancer. Skeletal metastases are most common in breast and prostate cancer, but virtually any advanced cancer may disseminate to the bone. On the basis of recent advances in the understanding of bone remodeling processes, denosumab, a fully human monoclonal antibody against RANK-L, has been developed. Phase III clinical trials have demonstrated that denosumab is well tolerated and effective in the treatment of bone loss and prevention of skeletal-related events in patients with bone metastases

    RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes

    Full text link
    BACKGROUND Metastases to bone are a frequent complication of human prostate cancer and result in the development of osteoblastic lesions that include an underlying osteoclastic component. Previous studies in rodent models of breast and prostate cancer have established that receptor activator of NF-ΚB ligand (RANKL) inhibition decreases bone lesion development and tumor growth in bone. RANK is essential for osteoclast differentiation, activation, and survival via its expression on osteoclasts and their precursors. RANK expression has also been observed in some tumor cell types such as breast and colon, suggesting that RANKL may play a direct role on tumor cells. METHODS Male CB17 severe combined immunodeficient (SCID) mice were injected with PC3 cells intratibially and treated with either PBS or human osteprotegerin (OPG)-Fc, a RANKL antagonist. The formation of osteolytic lesions was analyzed by X-ray, and local and systemic levels of RANKL and OPG were analyzed. RANK mRNA and protein expression were assessed on multiple prostate cancer cell lines, and events downstream of RANK activation were studied in PC3 cells in vitro. RESULTS OPG-Fc treatment of PC3 tumor-bearing mice decreased lesion formation and tumor burden. Systemic and local levels of RANKL expression were increased in PC3 tumor bearing mice. PC3 cells responded to RANKL by activating multiple signaling pathways which resulted in significant changes in expression of genes involved in osteolysis and migration. RANK activation via RANKL resulted in increased invasion of PC3 cells through a collagen matrix. CONCLUSION These data demonstrate that host stromal RANKL is induced systemically and locally as a result of PC3 prostate tumor growth within the skeleton. RANK is expressed on prostate cancer cells and promotes invasion in a RANKL-dependent manner. Prostate 68: 92–104, 2008. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57344/1/20678_ftp.pd

    Insulin synthesis by recombination of A and B chains: a highly efficient method.

    No full text
    • 

    corecore