1,136 research outputs found

    Social Dilemmas and Cooperation in Complex Networks

    Get PDF
    In this paper we extend the investigation of cooperation in some classical evolutionary games on populations were the network of interactions among individuals is of the scale-free type. We show that the update rule, the payoff computation and, to some extent the timing of the operations, have a marked influence on the transient dynamics and on the amount of cooperation that can be established at equilibrium. We also study the dynamical behavior of the populations and their evolutionary stability.Comment: 12 pages, 7 figures. to appea

    Evolution of Cooperation and Coordination in a Dynamically Networked Society

    Get PDF
    Situations of conflict giving rise to social dilemmas are widespread in society and game theory is one major way in which they can be investigated. Starting from the observation that individuals in society interact through networks of acquaintances, we model the co-evolution of the agents' strategies and of the social network itself using two prototypical games, the Prisoner's Dilemma and the Stag Hunt. Allowing agents to dismiss ties and establish new ones, we find that cooperation and coordination can be achieved through the self-organization of the social network, a result that is non-trivial, especially in the Prisoner's Dilemma case. The evolution and stability of cooperation implies the condensation of agents exploiting particular game strategies into strong and stable clusters which are more densely connected, even in the more difficult case of the Prisoner's Dilemma.Comment: 18 pages, 14 figures. to appea

    Mammalian models of extended healthy lifespan

    Get PDF
    Over the last two centuries, there has been a significant increase in average lifespan expectancy in the developed world. One unambiguous clinical implication of getting older is the risk of experiencing age-related diseases including various cancers, dementia, type-2 diabetes, cataracts and osteoporosis. Historically, the ageing process and its consequences were thought to be intractable. However, over the last two decades or so, a wealth of empirical data has been generated which demonstrates that longevity in model organisms can be extended through the manipulation of individual genes. In particular, many pathological conditions associated with the ageing process in model organisms, and importantly conserved from nematodes to humans, are attenuated in long-lived genetic mutants. For example, several long-lived genetic mouse models show attenuation in age-related cognitive decline, adiposity, cancer and glucose intolerance. Therefore, these long-lived mice enjoy a longer period without suffering the various sequelae of ageing. The greatest challenge in the biology of ageing is to now identify the mechanisms underlying increased healthy lifespan in these model organisms. Given that the elderly are making up an increasingly greater proportion of society, this focused approach in model organisms should help identify tractable interventions that can ultimately be translated to humans

    Marked increase in PROP taste responsiveness following oral supplementation with selected salivary proteins or their related free amino acids

    Get PDF
    The genetic predisposition to taste 6-n-propylthiouracil (PROP) varies among individuals and is associated with salivary levels of Ps-1 and II-2 peptides, belonging to the basic proline-rich protein family (bPRP). We evaluated the role of these proteins and free amino acids that selectively interact with the PROP molecule, in modulating bitter taste responsiveness. Subjects were classified by their PROP taster status based on ratings of perceived taste intensity for PROP and NaCl solutions. Quantitative and qualitative determinations of Ps-1 and II-2 proteins in unstimulated saliva were performed by HPLC-ESI-MS analysis. Subjects rated PROP bitterness after supplementation with Ps-1 and II-2, and two amino acids (L-Arg and L-Lys) whose interaction with PROP was demonstrated by (1)H-NMR spectroscopy. ANOVA showed that salivary levels of II-2 and Ps-1 proteins were higher in unstimulated saliva of PROP super-tasters and medium tasters than in non-tasters. Supplementation of Ps-1 protein in individuals lacking it in saliva enhanced their PROP bitter taste responsiveness, and this effect was specific to the non-taster group.(1)H-NMR results showed that the interaction between PROP and L-Arg is stronger than that involving L-Lys, and taste experiments confirmed that oral supplementation with these two amino acids increased PROP bitterness intensity, more for L-Arg than for L-Lys. These data suggest that Ps-1 protein facilitates PROP bitter taste perception and identifies a role for free L-Arg and L-Lys in PROP tasting

    The gustin (CA6) gene polymorphism, rs2274333 (A/G), as a mechanistic link between PROP tasting and fungiform taste papilla density and maintenance

    Get PDF
    Taste sensitivity to PROP varies greatly among individuals and is associated with polymorphisms in the bitter receptor gene TAS2R38, and with differences in fungiform papilla density on the anterior tongue surface. Recently we showed that the PROP non-taster phenotype is strongly associated with the G variant of polymorphism rs2274333 (A/G) of the gene that controls the salivary trophic factor, gustin. The aims of this study were 1) to investigate the role of gustin gene polymorphism rs2274333 (A/G), in PROP sensitivity and fungiform papilla density and morphology, and 2) to investigate the effect of this gustin gene polymorphism on cell proliferation and metabolic activity. Sixty-four subjects were genotyped for both genes by PCR techniques, their PROP sensitivity was assessed by scaling and threshold methods, and their fungiform papilla density, diameter and morphology were determined. In vitro experiments examined cell proliferation and metabolic activity, following treatment with saliva of individuals with and without the gustin gene mutation, and with isolated protein, in the two iso-forms. Gustin and TAS2R38 genotypes were associated with PROP threshold (p=0.0001 and p=0.0042), but bitterness intensity was mostly determined by TAS2R38 genotypes (p<0.000001). Fungiform papillae densities were associated with both genotypes (p<0.014) (with a stronger effect for gustin; p=0.0006), but papilla morphology was a function of gustin alone (p<0.0012). Treatment of isolated cells with saliva from individuals with the AA form of gustin or direct application of the active iso-form of gustin protein increased cell proliferation and metabolic activity (p<0.0135). These novel findings suggest that the rs2274333 polymorphism of the gustin gene affects PROP sensitivity by acting on fungiform papilla development and maintenance, and could provide the first mechanistic explanation for why PROP super-tasters are more responsive to a broad range of oral stimul

    Evolution of Coordination in Social Networks: A Numerical Study

    Get PDF
    Coordination games are important to explain efficient and desirable social behavior. Here we study these games by extensive numerical simulation on networked social structures using an evolutionary approach. We show that local network effects may promote selection of efficient equilibria in both pure and general coordination games and may explain social polarization. These results are put into perspective with respect to known theoretical results. The main insight we obtain is that clustering, and especially community structure in social networks has a positive role in promoting socially efficient outcomes.Comment: preprint submitted to IJMP

    Gustatory Sensitivity and Food Acceptance in Two Phylogenetically Closely Related Papilionid Species: Papilio hospiton and Papilio machaon.

    Get PDF
    In herbivorous insects, food selection depends on sensitivity to specific chemical stimuli from host-plants as well as to secondary metabolites (bitter) and to sugars (phagostimulatory). Bitter compounds are noxious, unpalatable or both and evoke an aversive feeding response. Instead, sugars and sugar alcohols play a critical role in determining and enhancing the palatability of foods. We assumed that peripheral taste sensitivity may be related to the width of the host selection. Our model consists of two closely phylogenetically related Papilionid species exhibiting a difference in host plant choice: Papilio hospiton and Papilio machaon. The spike activity of the lateral and medial maxillary styloconic taste sensilla was recorded following stimulation with several carbohydrates, nicotine and NaCl, with the aim of characterizing their gustatory receptor neurons and of comparing their response patterns in the light of their different acceptability in feeding behaviour. The results show that: a) each sensillum houses phagostimulant and phagodeterrent cells; b) the spike activity of the gustatory neurons in response to different taste stimuli is higher in P. hospiton than in P. machaon; c) sugar solutions inhibit the spike activity of the deterrent and salt cells, and the suppression is higher in P. machaon than in P. hospiton. In conclusion, we propose that the different balance between the phagostimulant and phagodeterrent inputs from GRNs of maxillary sensilla may contribute in determining the difference in food choice and host range
    corecore