46 research outputs found

    Linguistic signs in action: The neuropragmatics of speech acts

    Get PDF
    What makes human communication exceptional is the ability to grasp speaker’s intentions beyond what is said verbally. How the brain processes communicative functions is one of the central concerns of the neurobiology of language and pragmatics. Linguistic-pragmatic theories define these functions as speech acts, and various pragmatic traits characterise them at the levels of propositional content, action sequence structure, related commitments and social aspects. Here I discuss recent neurocognitive studies, which have shown that the use of identical linguistic signs in conveying different communicative functions elicits distinct and ultra-rapid neural responses. Interestingly, cortical areas show differential involvement underlying various pragmatic features related to theory-of-mind, emotion and action for specific speech acts expressed with the same utterances. Drawing on a neurocognitive model, I posit that understanding speech acts involves the expectation of typical partner follow-up actions and that this predictive knowledge is immediately reflected in mind and brain

    Online comprehension of conditionals in context: A self-paced reading study on wenn (‘if’) versus nur wenn (‘only if’) in German

    Get PDF
    Comprehending conditional statements is fundamental for hypothetical reasoning about situations. However, the online comprehension of conditional statements containing different conditional connectives is still debated. We report two self-paced reading experiments on German conditionals presenting the conditional connectives wenn (‘if’) and nur wenn (‘only if’) in identical discourse contexts. In Experiment 1, participants read a conditional sentence followed by the confirmed antecedent p and the confirmed or negated consequent q. The final, critical sentence was presented word by word and contained a positive or negative quantifier (ein/kein ‘one/no’). Reading times of the two quantifiers did not differ between the two conditional connectives. In Experiment 2, presenting a negated antecedent, reading times for the critical positive quantifier (ein) did not differ between conditional connectives, while reading times for the negative quantifier (kein) were shorter for nur wenn than for wenn. The results show that comprehenders form distinct predictions about discourse continuations due to differences in the lexical semantics of the tested conditional connectives, shedding light on the role of conditional connectives in the online interpretation of conditionals in general

    A Neurobiologically Constrained Model

    Get PDF
    Understanding the meaning of words and its relationship with the outside world involves higher cognitive processes unique of the human brain. Despite many decades of research on the neural substrates of semantic processing, a consensus about the functions and components of the semantic system has not been reached among cognitive neuroscientists. This issue is mainly influenced by two sets of neurocognitive empirical findings that have shown (i) the existence of several regions acting as ’semantic hubs’, where the meaning of all types of words is processed and (ii) the presence of other cortical regions specialised for the processing of specific semantic word categories, such as animals, tools, or actions. Further evidence on semantic meaning processing comes from neuroimaging and transcranial magnetic stimulation studies in visually deprived population that acquires semantic knowledge through non-sensory modalities. These studies have documented massive neural changes in the visual system that is in turn recruited for linguistic and semantic processing. On this basis, this dissertation investigates the neurobiological mechanism that enables humans to acquire, store and processes linguistics meaning by means of a neurobiologically constrained neural network and offers an answer to the following hotly debated questions: Why both semantic hubs and modality-specific regions are involved in semantic meaning processing in the brain? Which biological principles are critical for the emergence of semantics at the microstructural neural level and how is the semantic system implemented under deprived conditions, in particular in congenitally blind people? First, a neural network model closely replicating the anatomical and physiological features of the human cortex was designed. At the micro level, the network was composed of 15,000 artificial neurons; at the large-scale level, there were 12 areas representing the frontal, temporal, and occipital lobes relevant for linguistic and semantic processing. The connectivity structure linking the different cortical areas was purely based on neuroanatomical evidence. Two models were used, each simulating the same set of cortical regions but at different level of details: one adopted a simple connectivity structure with a mean-field approach (i.e. graded-response neurons), and the other used a fully connected model with adaptation-based spiking cells. Second, the networks were used to simulate the process of learning semantic relationships between word-forms, specific object perceptions, and motor movements of the own body in deprived and undeprived visual condition. As a result of Hebbian correlated learning, distributed word-related cell assembly circuits spontaneously emerged across the different cortical semantic areas exhibiting different topographical distribution. Third, the network was reactivated with the learned auditory patterns (simulating word recognition processes) to investigate the temporal dynamics of cortical semantic activation and compare them with real brain responses. In summary, the findings of the present work demonstrate that meaningful linguistic units are represented in the brain in the form of cell assemblies that are distributed over both semantic hubs and category-specific regions spontaneously emerged through the mutual interaction of a single set of biological mechanisms acting within specific neuroanatomical structures. These biological principles acting together also offer an explanation of the mechanisms underlying massive neural changes in the visual cortex for language processing caused by blindness. The present work is a first step in better understanding the building blocks of language and semantic processing in sighted and blind populations by translating biological principles that govern human cognition into precise mathematical neural networks of the human brain.Um die Bedeutung von Wörtern und ihre Beziehung zur Außenwelt zu verstehen, mĂŒssen die kognitiven Prozesse betrachtet werden, die einzigartig fĂŒr das menschliche Gehirn sind. Trotz jahrzehntelanger Forschungen an den neuronalen Substraten der semantischen Verarbeitung im menschlichen Gehirn wurde bisher kein Konsens ĂŒber die Funktionen und Komponenten des semantischen Systems in den kognitiven Neurowissenschaftlern erreicht. Dieses Problem grĂŒndet darin, dass neurokognitive empirische Studien zumeist zu zwei Endergebnissen kamen: (i) der Existenz von mehrere Regionen, die als ‘semantische Hubs’ fungieren, in denen die Bedeutung aller Wortarten verarbeitet wird, und (ii) dem Vorhandensein weiterer kortikaler Regionen, die auf die Verarbeitung spezifischer semantischer Kategorien wie Tiere, Werkzeuge oder Aktionswörtern spezialisiert sind. Ein weiterer Beweis fĂŒr die Verarbeitung semantischer Bedeutungen lĂ€sst sich aus Bildgebungsstudien und Studien mit transkranialer Magnetstimulation an visuell benachteiligten Probanden entnehmen, die die linguistische Bedeutung nicht durch sensorische ModalitĂ€ten erwerben. Diese Studien konnten massive neuronale VerĂ€nderungen im visuellen System dokumentieren, die wiederum fĂŒr die sprachliche und semantische Verarbeitung verwendet werden. Die vorliegende Dissertation untersucht mittels eines biologischen neuronalen Netzwerkes jene kognitiven Prozesse, die es Menschen ermöglichen, linguistische Bedeutungen in der tĂ€glichen Kommunikation zu erfassen, zu speichern und zu verarbeiten. Sie schlĂ€gt Antworten auf die folgenden neurowissenschaftlich heiß diskutierten Fragen vor: Warum sind sowohl semantische Hubs als auch modalitĂ€tsspezifische Regionen relevant fĂŒr die sprachliche und semantische Informationsverarbeitung im Gehirn? Welche biologischen Prinzipien sind von entscheidender Bedeutung fĂŒr die Entstehung von Semantik auf mikrostruktureller neuronaler Ebene? Und Wie ist das semantische System unter benachteiligten Bedingungen reprĂ€sentiert? ZunĂ€chst wurde ein neuronales Netzwerkmodell implementiert, das die anatomischen und physiologischen Merkmale des menschlichen Kortex prĂ€zise widerspiegelt. Auf der Mikroebene besteht das Netzwerkmodel aus 15.000 kĂŒnstlichen Neuronen, auf der Großebene aus 12 Arealen der Frontal-, Temporal- und Okzipitallappen, die fĂŒr die sprachliche und semantische Verarbeitung relevant sind. Die Verbindungsstruktur zwischen den verschiedenen kortikalen Arealen wurde rein auf Grundlage von neuroanatomischen Befunden implementiert. Zwei Modelle wurden verwendet, die jeweils die gleichen kortikalen Regionen simulierten, allerdings in verschiedenen Varianten: Das erste Modell ging von einer einfachen KonnektivitĂ€tsstruktur mit einem Mean-field Ansatz (graded-response neurons) aus, wĂ€hrend das zweite einen vollstĂ€ndig verbundenen Aufbau mit adaptionsbasierten Spiking-Zellen (Aktionspotential) verwendete. Anschließend dienten die neuronalen Netzwerke dazu, den Lernprozess der semantischen Verlinkung zwischen Wortformen, bestimmten Objektwahrnehmungen und motorischen Bewegungen des eigenen Körpers zu simulieren, sowohl in gesundem als auch in benachteiligtem Sehzustand. Als Ergebnis des Hebbschen Korrelationslernens traten spontan verteilte Neuronenverbindungen (cell assemblies) in den verschiedenen kortikalen semantischen Bereichen auf, die unterschiedliche topografische Verteilungen zeigten. Zuletzt wurde das Netzwerkmodell mit den erlernten auditorischen Mustern reaktiviert (Worterkennungsprozesse), um die zeitliche Dynamik kortikaler semantischer Aktivierung zu untersuchen und sie mit realen Gehirnantworten zu vergleichen. Die vorliegende Arbeit kam zu folgenden Ergebnissen: Die neuronale ReprĂ€sentation linguistischer Bedeutung wird im Gehirn in Form von cell assemblies dargestellt, welche ĂŒber semantische Hubs und modalitĂ€tsspezifische Regionen verteilt sind. Diese entstehen spontan durch die Interaktion einer Reihe von biologischen Mechanismen, die innerhalb spezifischer neuroanatomischer Strukturen wirken. Das Zusammenwirken dieser biologischen Prinzipien bietet zusĂ€tzlich eine ErklĂ€rung fĂŒr jene Faktoren, die fĂŒr die massiven neuronalen VerĂ€nderungen in der sprachlichen und semantischen Netzwerke bei Blindheit verantwortlich sind. Die in dieser Dissertation dokumentierten Studien sind ein erster Schritt in Richtung eines besseren VerstĂ€ndnisses der sprachlichen und semantischen Informationsverarbeitung bei sehenden und blinden Menschen, basierend auf einer Übersetzung der biologischen Prinzipien der menschlichen Kognition in prĂ€zise mathematische neuronale Netzwerke des menschlichen Gehirns

    Conditionals in context: Brain signatures of prediction in discourse processing

    Get PDF
    Comprehenders are known to generate expectations about upcoming linguistic input at the sentence and discourse level. However, most previous studies on prediction focused mainly on word-induced brain activity rather than examining neural activity preceding a critical stimulus in discourse processing, where prediction actually takes place. In this EEG study, participants were presented with multiple sentences resembling a discourse including conditional sentences with either only if or if, which are characterized by different semantics, triggering stronger or weaker predictions about the possible continuation of the presented discourses, respectively. Results revealed that discourses including only if, as compared to discourses with bare if, triggered an increased predictive neural activity before the expected critical word, resembling the readiness potential. Moreover, word-induced P300 brain responses were found to be enhanced by unpredictable discourse continuations and reduced in predictable discourse continuations. Intriguingly, brain responses preceding and following the critical word were found to be correlated, which yields evidence for predictive activity modulating word-induced processing on the discourse level. These findings shed light on the predictive nature of neural processes at the discourse level, critically advancing our understanding of the functional interconnection between discourse understanding and prediction processes in brain and mind

    A neurobiologically constrained cortex model of semantic grounding with spiking neurons and brain-like connectivity

    Get PDF
    One of the most controversial debates in cognitive neuroscience concerns the cortical locus of semantic knowledge and processing in the human brain. Experimental data revealed the existence of various cortical regions that become differentially active during meaning processing, ranging from semantic hubs (which bind different types of meaning together) to modality-specific sensorimotor areas, involved in specific conceptual categories. Why and how the brain uses such complex organization for conceptualization can be investigated using biologically constrained neurocomputational models. Here, we apply a spiking neuron model mimicking structure and connectivity of frontal, temporal and occipital areas to simulate semantic learning and symbol grounding in action and perception. As a result of Hebbian learning of the correlation structure of symbol, perception and action information, distributed cell assembly circuits emerged across various cortices of the network. These semantic circuits showed category-specific topographical distributions, reaching into motor and visual areas for action- and visually-related words, respectively. All types of semantic circuits included large numbers of neurons in multimodal connector hub areas, which is explained by cortical connectivity structure and the resultant convergence of phonological and semantic information on these zones. Importantly, these semantic hub areas exhibited some category-specificity, which was less pronounced than that observed in primary and secondary modality-preferential cortices. The present neurocomputational model integrates seemingly divergent experimental results about conceptualization and explains both semantic hubs and category-specific areas as an emergent process causally determined by two major factors: neuroanatomical connectivity structure and correlated neuronal activation during language learning

    Instantaneous Neural Processing of Communicative Functions Conveyed by Speech Prosody

    Get PDF
    During conversations, speech prosody provides important clues about the speaker’s communicative intentions. In many languages, a rising vocal pitch at the end of a sentence typically expresses a question function, whereas a falling pitch suggests a statement. Here, the neurophysiological basis of intonation and speech act understanding were investigated with high-density electroencephalography (EEG) to determine whether prosodic features are reflected at the neurophysiological level. Already approximately 100 ms after the sentence-final word differing in prosody, questions, and statements expressed with the same sentences led to different neurophysiological activity recorded in the event-related potential. Interestingly, low-pass filtered sentences and acoustically matched nonvocal musical signals failed to show any neurophysiological dissociations, thus suggesting that the physical intonation alone cannot explain this modulation. Our results show rapid neurophysiological indexes of prosodic communicative information processing that emerge only when pragmatic and lexico-semantic information are fully expressed. The early enhancement of question-related activity compared with statements was due to sources in the articulatory-motor region, which may reflect the richer action knowledge immanent to questions, namely the expectation of the partner action of answering the question. The present findings demonstrate a neurophysiological correlate of prosodic communicative information processing, which enables humans to rapidly detect and understand speaker intentions in linguistic interactions

    Cognitive features of indirect speech acts

    Get PDF
    The offer of some cake can be declined by saying “I am on a diet” – an indirect reply. Here, we asked whether certain well-established psychological and conceptual features are linked to the (in)directness of speech acts – an issue unexplored so far. Subjects rated direct and indirect speech acts performed by the same critical linguistic forms in different dialogic contexts. We find that indirect replies were understood with less certainty, were less predictable by, less coherent with and less semantically similar to their context question. These effects were smaller when direct and indirect replies were matched for the type of speech acts for which they were used, compared to when they were not speech act matched. Crucially, all measured cognitive dimensions were strongly associated with each other. These findings suggest that indirectness goes hand-in-hand with a set of cognitive features, which should be taken into account when interpreting experimental findings, including neuroimaging studies of indirectness

    Brain correlates of action word memory revealed by fMRI

    Get PDF
    Understanding language semantically related to actions activates the motor cortex. This activation is sensitive to semantic information such as the body part used to perform the action (e.g. arm-/leg-related action words). Additionally, motor movements of the hands/feet can have a causal effect on memory maintenance of action words, suggesting that the involvement of motor systems extends to working memory. This study examined brain correlates of verbal memory load for action-related words using event-related fMRI. Seventeen participants saw either four identical or four different words from the same category (arm-/leg-related action words) then performed a nonmatching-to-sample task. Results show that verbal memory maintenance in the high-load condition produced greater activation in left premotor and supplementary motor cortex, along with posterior-parietal areas, indicating that verbal memory circuits for action-related words include the cortical action system. Somatotopic memory load effects of arm- and leg-related words were observed, but only at more anterior cortical regions than was found in earlier studies employing passive reading tasks. These findings support a neurocomputational model of distributed action-perception circuits (APCs), according to which language understanding is manifest as full ignition of APCs, whereas working memory is realized as reverberant activity receding to multimodal prefrontal and lateral temporal areas

    COMPARATIVE ANALYSIS OF THE STRUCTURE OF TEMPOROMANDIBULAR JOINT IN HUMAN AND RABBIT

    Get PDF
    In order to increase knowledge on the morphology and structure of the articular disc of the temporomandibular joint (TMJ) for a better understanding of the functional role of the same, it proceeded with an investigation on histological samples in the block of TMJ and periarticular tissues of adult rabits and human fatustes at different stage of development. (www.actabiomedica.it

    The MicroRNA Family Gets Wider: The IsomiRs Classification and Role

    Get PDF
    MicroRNAs (miRNAs or miRs) are the most characterized class of non-coding RNAs and are engaged in many cellular processes, including cell differentiation, development, and homeostasis. MicroRNA dysregulation was observed in several diseases, cancer included. Epitranscriptomics is a branch of epigenomics that embraces all RNA modifications occurring after DNA transcription and RNA synthesis and involving coding and non-coding RNAs. The development of new high-throughput technologies, especially deep RNA sequencing, has facilitated the discovery of miRNA isoforms (named isomiRs) resulting from RNA modifications mediated by enzymes, such as deaminases and exonucleases, and differing from the canonical ones in length, sequence, or both. In this review, we summarize the distinct classes of isomiRs, their regulation and biogenesis, and the active role of these newly discovered molecules in cancer and other diseases
    corecore