136 research outputs found

    Electrical plasmon injection in double-layer graphene heterostructures

    Full text link
    It is by now well established that high-quality graphene enables a gate-tunable low-loss plasmonic platform for the efficient confinement, enhancement, and manipulation of optical fields spanning a broad range of frequencies, from the mid infrared to the Terahertz domain. While all-electrical detection of graphene plasmons has been demonstrated, electrical plasmon injection (EPI), which is crucial to operate nanoplasmonic devices without the encumbrance of a far-field optical apparatus, remains elusive. In this work, we present a theory of EPI in double-layer graphene, where a vertical tunnel current excites acoustic and optical plasmon modes. We first calculate the power delivered by the applied inter-layer voltage bias into these collective modes. We then show that this system works also as a spectrally-resolved molecular sensor.Comment: 10 pages, 6 figure

    Electron density distribution and screening in rippled graphene sheets

    Get PDF
    Single-layer graphene sheets are typically characterized by long-wavelength corrugations (ripples) which can be shown to be at the origin of rather strong potentials with both scalar and vector components. We present an extensive microscopic study, based on a self-consistent Kohn-Sham-Dirac density-functional method, of the carrier density distribution in the presence of these ripple-induced external fields. We find that spatial density fluctuations are essentially controlled by the scalar component, especially in nearly-neutral graphene sheets, and that in-plane atomic displacements are as important as out-of-plane ones. The latter fact is at the origin of a complicated spatial distribution of electron-hole puddles which has no evident correlation with the out-of-plane topographic corrugations. In the range of parameters we have explored, exchange and correlation contributions to the Kohn-Sham potential seem to play a minor role.Comment: 13 pages, 13 figures, submitted. High-quality figures can be requested to the author

    Plasmons in realistic graphene/hexagonal boron nitride moiré patterns

    Get PDF
    van der Waals heterostructures employing graphene and hexagonal boron nitride (hBN) crystals have emerged as a promising platform for plasmonics thanks to the tunability of their collective modes with carrier density and record values for plasmonics figures of merit. In this paper we investigate theoretically the role of moiré-pattern superlattices in nearly aligned graphene on hBN by using a continuum-model Hamiltonian derived from ab initio calculations. We calculate the system's energy-loss function for a range of chemical potential values that are accessible in gated devices. Our calculations reveal that the electron-hole asymmetry of the moiré bands leads to a remarkable asymmetry of the plasmon dispersion between positive and negative chemical potentials, showcasing the intricate band structure and rich absorption spectrum across the secondary Dirac point gap for the hole bands. © 2019 American Physical Society

    Signatures of the super fluid-insulator phase transition in laser driven dissipative nonlinear cavity arrays

    Get PDF
    We analyze the non-equilibrium dynamics of a gas of interacting photons in an array of coupled dissipative nonlinear cavities driven by a pulsed external coherent field. Using a mean-field approach, we show that the system exhibits a phase transition from a Mott-insulator-like to a superfluid regime. For a given single-photon nonlinearity, the critical value of the photon tunneling rate at which the phase transition occurs increases with the increasing photon loss rate. We checked the robustness of the transition by showing its insensitivity to the initial state prepared by the the pulsed excitation. We find that the second-order coherence of cavity emission can be used to determine the phase diagram of an optical many-body system without the need for thermalization.Comment: 4 pages, 4 figure

    Nonlocal Spin Transport as a Probe of Viscous Magnon Fluids

    Get PDF
    Magnons in ferromagnets behave as a viscous fluid over a length scale, the momentum-relaxation length, below which momentum-conserving scattering processes dominate. We show theoretically that in this hydrodynamic regime viscous effects lead to a sign change in the magnon chemical potential, which can be detected as a sign change in the nonlocal resistance measured in spin transport experiments. This sign change is observable when the injector-detector distance becomes comparable to the momentum-relaxation length. Taking into account momentum- and spin-relaxation processes, we consider the quasiconservation laws for momentum and spin in a magnon fluid. The resulting equations are solved for nonlocal spin transport devices in which spin is injected and detected via metallic leads. Because of the finite viscosity we also find a backflow of magnons close to the injector lead. Our work shows that nonlocal magnon spin transport devices are an attractive platform to develop and study magnon-fluid dynamics

    Nonequilibrium Phase Diagram of a Driven-Dissipative Many-Body System

    Full text link
    We study the nonequilibrium dynamics of a many-body bosonic system on a lattice, subject to driving and dissipation. The time-evolution is described by a master equation, which we treat within a generalized Gutzwiller mean field approximation for density matrices. The dissipative processes are engineered such that the system, in the absence of interaction between the bosons, is driven into a homogeneous steady state with off-diagonal long range order. We investigate how the coherent interaction affects qualitatively the properties of the steady state of the system and derive a nonequilibrium phase diagram featuring a phase transition into a steady state without long range order. The phase diagram exhibits also an extended domain where an instability of the homogeneous steady state gives rise to a persistent density pattern with spontaneously broken translational symmetry. In the limit of small particle density, we provide a precise analytical description of the time-evolution during the instability. Moreover, we investigate the transient following a quantum quench of the dissipative processes and we elucidate the prominent role played by collective topological variables in this regime.Comment: 23 pages, 15 figure

    Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening

    Get PDF
    We present a combined analytical and numerical study of the early stages (sub-100fs) of the non-equilibrium dynamics of photo-excited electrons in graphene. We employ the semiclassical Boltzmann equation with a collision integral that includes contributions from electron-electron (e-e) and electron-optical phonon interactions. Taking advantage of circular symmetry and employing the massless Dirac Fermion (MDF) Hamiltonian, we are able to perform an essentially analytical study of the e-e contribution to the collision integral. This allows us to take particular care of subtle collinear scattering processes - processes in which incoming and outgoing momenta of the scattering particles lie on the same line - including carrier multiplication (CM) and Auger recombination (AR). These processes have a vanishing phase space for two dimensional MDF bare bands. However, we argue that electron-lifetime effects, seen in experiments based on angle-resolved photoemission spectroscopy, provide a natural pathway to regularize this pathology, yielding a finite contribution due to CM and AR to the Coulomb collision integral. Finally, we discuss in detail the role of physics beyond the Fermi golden rule by including screening in the matrix element of the Coulomb interaction at the level of the Random Phase Approximation (RPA), focusing in particular on the consequences of various approximations including static RPA screening, which maximizes the impact of CM and AR processes, and dynamical RPA screening, which completely suppresses them

    Collapse and revival in inter-band oscillations of a two-band Bose-Hubbard model

    Full text link
    We study the effect of a many-body interaction on inter-band oscillations in a two-band Bose-Hubbard model with external Stark force. Weak and strong inter-band oscillations are observed, where the latter arise from a resonant coupling of the bands. These oscillations collapse and revive due to a weak two-body interaction between the atoms. Effective models for oscillations in and out of resonance are introduced that provide predictions for the system's behaviour, particularly for the time-scales for the collapse and revival of the resonant inter-band oscillations.Comment: 10 pages, 5 figure

    Reservoir engineering and dynamical phase transitions in optomechanical arrays

    Get PDF
    We study the driven-dissipative dynamics of photons interacting with an array of micromechanical membranes in an optical cavity. Periodic membrane driving and phonon creation result in an effective photon-number conserving non-unitary dynamics, which features a steady state with long-range photonic coherence. If the leakage of photons out of the cavity is counteracted by incoherent driving of the photonic modes, we show that the system undergoes a dynamical phase transition to the state with long-range coherence. A minimal system, composed of two micromechanical membranes in a cavity, is studied in detail, and it is shown to be a realistic setup where the key processes of the driven-dissipative dynamics can be seen.Comment: 16 pages, 9 figure

    Negative local resistance caused by viscous electron backflow in graphene

    Full text link
    Graphene hosts a unique electron system in which electron-phonon scattering is extremely weak but electron-electron collisions are sufficiently frequent to provide local equilibrium above liquid nitrogen temperature. Under these conditions, electrons can behave as a viscous liquid and exhibit hydrodynamic phenomena similar to classical liquids. Here we report strong evidence for this transport regime. We find that doped graphene exhibits an anomalous (negative) voltage drop near current injection contacts, which is attributed to the formation of submicrometer-size whirlpools in the electron flow. The viscosity of graphene's electron liquid is found to be ~0.1 m2^2 /s, an order of magnitude larger than that of honey, in agreement with many-body theory. Our work shows a possibility to study electron hydrodynamics using high quality graphene
    • …
    corecore