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E lectron  d ensity  d istrib u tion  and screen ing in rippled graphene sh eets
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Single-layer graphene sheets are typically characterized by long-wavelength corrugations (ripples) 
which can be shown to be at the origin of rather strong potentials with both scalar and vector com
ponents. We present an extensive microscopic study, based on a self-consistent Kohn-Sham-Dirac 
density-functional method, of the carrier density distribution in the presence of these ripple-induced 
external fields. We find that spatial density fluctuations are essentially controlled by the scalar 
component, especially in nearly-neutral graphene sheets, and that in-plane atomic displacements 
are as important as out-of-plane ones. The latter fact is at the origin of a complicated spatial distri
bution of electron-hole puddles which has no evident correlation with the out-of-plane topographic 
corrugations. In the range of parameters we have explored, exchange and correlation contributions 
to the Kohn-Sham potential seem to play a minor role.

PACS numbers: 71.15.Mb,71.10.-w,71.10.Ca,72.10.-d

I. IN T R O D U C T IO N

Graphene is a recently isolated material composed of 
carbon atoms arranged in a truly two-dimensional (2D) 
honeycomb lattice1-5. States near the Fermi energy of a 
graphene sheet are described by a massless Dirac equa
tion which has chiral states in which the honeycomb- 
sublattice pseudospin is aligned either parallel to or op
posite to momentum. The Dirac-like wave equation and 
the existence of this spin-1 /2-like quantum degree-of- 
freedom have a number of very intriguing implications 
on the properties of this material, most of which have 
been reviewed in the literature mentioned above.

Graphene has been shown to possess a wealth of tanta
lizing electronic, mechanical, and optical properties and 
might well become the material that w ill replace silicon 
in the next generation devices6. Current exfoliated sam
ples however suffer from a limited mobility, with typi
cal values around 10.000 — 20.000 cm2/(Vs): the main 
source of disorder which is behind these numbers is not 
yet completely understood and represents a substantial 
obstacle against the quest for fundamental physical ef
fects and the development of functional devices. The 
mechanism which is lim iting the mobility of the current 
(exfoliated) samples is actually one of the controversial 
topics in this field of research. Two “schools of thought” 
can be roughly identified: (i) one which ascribes the main 
limiting mechanism to charged impurities located in the 
(S iO 2) substrate7-12, and (ii) one which instead relies on 
other scattering mechanisms, such as quenched ripples13, 
which are also long-range in nature. Ripples have been 
seen in suspended membranes14,15 and also in flakes de
posited on substrates16-19 and have been studied theoret
ically by Monte Carlo20,21 and molecular dynamics22,23 
simulations.

The controversy is enriched by several experiments 
which have targeted the role of disorder in exfoliated

samples24-32. In particular, Bolotin et al.27 and Du et 
al.28 have observed a drastic increase in mobility in sus
pended samples, in agreement with a scenario in which 
charged impurities in the substrate are the main source 
of scattering. On the other hand, Ponomarenko et al. 29 
have studied exfoliated samples deposited on various sub
strates and found a rather weak dependence of the mobil
ity on the type of substrate. The authors of Ref. 29 have 
also studied transport in flakes embedded in media with 
very high dielectric constants, such as glycerol, ethanol, 
and water, and measured only a small increase in mo
bility. This experimental study seems thus to suggest 
that charged impurities are not necessarily the primary 
source of scattering in current samples. Whatever the 
leading sources of disorder are, it is of utmost importance 
to understand how well or poorly these are screened by 
electrons in graphene.

The induced carrier density in graphene sheets sub
jected to the long-range potential of one or many charged 
impurities, in the absence or in the presence of electron- 
electron interactions, has been extensively studied theo- 
retically33-43: to the best of our knowledge, similar mi
croscopic studies in the presence of corrugations have not 
yet appeared. The aim of this article is to cover this 
gap: we present extensive self-consistent fully-quantum- 
mechanical calculations of the electronic density profiles 
of massless Dirac fermions in the external scalar and vec
tor potentials created by the corrugations. Our main 
findings can be summarized as follows: (i) the spatial 
density fluctuations induced by the ripples are almost 
entirely controlled by the scalar potential, especially in 
graphene sheets that are close to average neutrality; (ii) 
the contributions to the scalar and vector potentials due 
to in-plane atomic displacements are as large as those due 
to out-of-plane ones; and (iii) exchange and correlation 
contributions to the effective scalar (Kohn-Sham) poten
tial seem to play a minor role in determining the shape of
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FIG . 1: (Color online) Three-dimensional plot of the corru
gated graphene sample used to calculate the average displace
ments shown in Fig. 2 and the scalar and vector potentials 
shown in Fig. 3.

the ripple-induced electron-hole puddles, at least in the 
range of parameters we have analyzed.

This manuscript is organized as follows. In Sect. I I  we 
discuss in detail how we have calculated scalar and vector 
potentials starting from a corrugated graphene sheet. In 
Sect. I I I  we introduce the theory and the numerical pro
cedure we have used to calculate the induced carrier den
sity in the presence of the ripple-induced potentials and 
present our main numerical results. Finally in Sect. IV  
we draw our main conclusions. Appendix A  reports some 
technical remarks on the calculation of the density in
duced by a purely vector potential within linear-response 
theory.

II .  F R O M  R IP P L E S  TO  S C A L A R  A N D  
V E C T O R  P O T E N T IA L S

The aim of this Section is to describe how we have com
puted the scalar and vector potentials associated with 
ripples. For definiteness we focus our attention on rip
ples generated by thermal fluctuations20-22. The proce
dure we have followed is however completely general and 
applies to any type of ripples, independently of the mi
croscopic, intrinsic or extrinsic, mechanisms that lie at 
their origin.

A . M icroscopic calculation of the average 
displacements

In what follows we consider a specific realization of a 
corrugated graphene sheet at a temperature T  = 300 K, 
computed with a Monte Carlo simulation as in Ref. 21. 
In Fig. 1 we show the three-dimensional bond structure

of the sample, which contains 19504 atoms and fulfills 
periodic boundary conditions in the simulation box.

The computation of the corrugation-induced scalar and 
vector potentials that we w ill carry out in Sect. I I B  be
low requires the knowledge of the displacements {u j}  of 
the atomic positions { r j }  in the sample (i is the atomic 
label) with respect to a flat reference distribution {rj}. 
The latter is defined by applying a dilation/contraction 
to the honeycomb lattice at T  = 0. More precisely, we 
first make sure that the positions, r CM and r fcM, of the 
center-of-mass of the two distributions coincide, and use 
in the following the displaced vectors r  ^  r  — r CM. We 
then dilate/contract the honeycomb lattice at T  = 0 to 
compensate for the variation of the carbon-carbon bond 
length produced by the finite temperature. The coef
ficient A in the transformation r  ^  Ar is obtained by 
averaging the ratio Aj = |rj |/|rj | over all the atoms i 
such that |rj | > 50.0 A. The latter restriction reduces 
the impact of the fluctuations of the atomic positions, 
produced by the ripples, but does not affect the com
putation of the overall stretch/compression produced by 
the temperature. We find A ~  0.998 (< 1: the effect of 
temperature in this range is indeed to reduce the carbon
carbon bond length44). The variance of {A j }  is of order 
10 -3, hence the stretch induced by the temperature is the 
dominant contribution of the atomic displacements from 
the positions of the bare honeycomb lattice. In  other 
words, to prepare a sensible reference distribution it is 
essential to perform the aforementioned stretch, even if 
the factor A is close to unity.

Finally, we make sure that the sample and the reference 
distribution are not globally rotated with respect to each 
other. We compute the average angular displacement 
vector

à  = —  V  arccos
|ri I N  / |ri x r 1

( 1 )

where the summation is restricted to the N  atoms such 
that the cosine of the angle between r* and r* is larger 
than 0.9. In  the analyzed sample the modulus of 0  is 
of order 10 -3, hence we conclude that the sample and 
the reference distribution are properly aligned. We are 
now in position to compute the displacement vectors 
u* = r ' — r*: thanks to the above mentioned prepara
tion procedures, these w ill be free of artificial systematic 
trends and w ill provide us with an accurate local descrip
tion of the ripples.

As we solve for the electronic density on a square mesh 
in the simulation box (see the description of the method 
in Sec. I I I  B ) , the knowledge of the displacement of each 
atom is superabundant. For this reason we average the 
atomic displacements over square patches defined on a 
square mesh. To show that this averaging yields indeed a 
correct modeling of the physical system, we observe that 
the problem possesses three length scales: (i) graphene’s 
lattice constant a = a0\/3 ~  0.25 nm (here a0 = 1.42 A  is 
the carbon-carbon distance), (ii) the length scale As of the 
spatial structures in the specific sample shown in Fig. 1,

r r
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FIG . 2: (Color online) Average displacements u (r ) calcu
lated as discussed in Sect. II  A. The color scale represents 
the z component of the average displacements, varying from 
-3.0 A (blue) to +3.0 A (red). The arrows, whose length has 
been multiplied by a factor ten for better visibility, represent 
the in-plane components of the average displacements.

which is of the order of several nanometers (As ~  8 nm); 
and (iii) the spatial resolution Ares which we have in our 
continuum-model electronic structure calculations [see 
Eq. (28)]. For a sample of roughly 22 nm x 22 nm, as 
the one shown in Fig. 1 , Ares æ 1.5 nm (see discussion 
below in Sect. I I I B ) . Since As ^  Ares ^  a, the struc
tures in Fig. 1 are properly resolved by the mean dis
placement vectors u (r ), obtained by averaging the micro
scopic displacements over square patches of area æ A;:es. 
The result of this averaging procedure for the sample in 
Fig. 1 is shown in Fig. 2 where we have plotted u (r ) as 
calculated on a square mesh with 32 x 32 points. We 
remark that the in-plane displacements undergo strong 
variations between neighboring patches as a consequence 
of the fact that even the in-plane displacements of neigh
boring atoms in the sample do not present signatures of 
local correlations.

We now proceed to discuss how we have calculated the 
deformation tensor and the corrugation-induced scalar 
and vector potentials.

where (with i , j  G {x , y }) is the usual deformation 
tensor,

= 1 / duj + du j + dukduk
2 1 dx7 dxj dxj dx7kE{x,y,z}

(4)

Here u* = u *(r) with i G {x , y, z}  are the Cartesian com
ponents of the average displacements. For the coupling 
constant g1 we have used two values, g1 = 3  eV and 
g1 = 16 eV (the latter value45,47, which is based on old 
transport data on graphite sample, seems largely overes
timated48 ), while

3k^ 
g2 = - 4 - Yo (5)

where 3 = — d log (y0)/dlog(a0) «  2 , y0 «  2.7 eV is the 
nearest-neighbour hopping parameter, and

(6)

For the shear ^s and bulk B  moduli we have used the 
recently calculated values44, ^s = 9.95 eV Â -2 and B  = 
12.52 eV Â-2, at a temperature T  = 300 K. We thus 
find that k æ 0.56 at this temperature.

In Fig. 3 we illustrate scalar and vector potentials cal
culated using Eqs. (2)-(6) above. W hile performing the 
calculation of Vi and V2 we have noticed that the deriva
tives of the average in-plane displacements U± are of 
0 ( 10-2), while the derivatives of the out-of-plane dis
placements uz are much bigger, 0(10 - 1  ). However, in 
the deformation tensor (4) the latter enter only quadrat- 
ically. We thus conclude that the contributions from 
in-plane and out-of-plane displacements are both of the 
same order, 0(10 - 1  ). As a result, no evident correla
tions link the out-of-plane topographic corrugations [i.e. 
the distribution of the out-of-plane average displacements 
uz (r ) shown in the color map in Fig. 2] with the scalar 
and vector potentials illustrated in Fig. 3.

I I I .  K O H N -SH A M -D IRA C  
D E N S IT Y - F U N C T IO N A L  C A LC U LA T IO N S

B . The deformation tensor and the 
corrugation-induced scalar and vector potentials

We have calculated scalar V1 and vector —
iA y potentials according to the standard formulas of the
theory of elasticity45,46:

V1 = g1 (uxx + ) (2)

and

V2 = g2 (uxx + 2iuxy) , (3)

In this Section we present an approximate self- 
consistent microscopic theory for the carrier density dis
tribution in the corrugation-induced scalar and vector 
potentials shown in Fig. 3.

A . Approximate Kohn-Sham-Dirac theory for 
corrugated graphene sheets

We have generalized the Kohn-Sham-Dirac (K SD ) the
ory described in Ref. 40 to deal with situations in which 
the massless Dirac fermion liquid is subjected to a space- 
dependent vector potential A (r ) (the vector potential 
introduced below has the physical dimensions of energy)
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FIG . 3: (Color online) Left panel: color plot of the scalar potential V i(r ) (in units of meV) calculated using Eq. (2) with 
g1 =3 eV. Central panel: the real part of the potential V2 (r ) (in units of meV) calculated using Eq. (3). Right panel: the 
imaginary part of the potential V2(r) (in units of meV).

which changes smoothly over many lattice constants. In 
this lim it the induced density £n (r) can be calculated by 
solving the following single-spin single-valley KSD  equa
tion:

{ct • [vp + A (r )] + 1 CTV k s (r)} (r ) = £ a ( r ) . (7)

Here a  is a 2D vector constructed with the 2 x 2 
Pauli matrices a 1 and a2 acting in pseudospin space, 
v = 3y0a0/(2ft) «  106 m/s is the bare Fermi velocity, 
p = —iftV r , 1a is the 2 x 2 identity matrix in pseudospin 
space, and the Kohn-Sham potential,

Vk s (r ) = Vext ( r ) + AVh (r ) + Vxc ( r ) , (8)
is the sum of the external scalar potential V̂ xt ( r ), the 
Hartree potential, and the scalar exchange-correlation 
potential. For A  = 0 Eq. (7) reduces to the KSD  equa
tion introduced in Ref. 40. Note that Eq. (7) neglects 
exchange-correlation corrections to the vector potential49 
A , which are beyond the scope of the present paper and 
which w ill be addressed in a subsequent publication.

The ground-state density n (r) is obtained as a sum 
over the KSD  spinors (r ):

n (r) = g E ^ 1A) (r  )|2 + |̂ AB ] (r)|2 ] f  (£A ) , (9)
A

where the factor g = gsgv = 4 is due to valley and 
spin degeneracies, {^A^ ( r ) , a = A, B }  are the pseu
dospin (sublattice) components of the spinor $ A (r ), and 
f  (x) = {exp [(x — i)/ (k BT )] + 1 } - 1  is the usual Fermi- 
Dirac thermal factor at a chemical potential i  = i ( T ). 
Equation (9) is a self-consistent closure relationship for 
the KSD  equation (7 ), since the Kohn-Sham potential 
VKS( r ) is a functional of the ground-state density n (r ).

In the absence of any source of external scalar and mag
netic fields, the scalar V̂ xt( r ) and vector A (r ) potentials 
are solely determined by the corrugations:

r Vext (r ) = V1 ( r )
\ A ( r ) = (Ke V2( r ), —3m V2( r ))

The Hartree potential is given by

AVh ( r ) = / d2r ' — —— - Jn (r ') , 
J e|r — r ' |

( 10 )

(1 1 )

where e is an average dielectric constant

e1 + e2e= 2 ( 1 2 )

Here e1 and e2 are the dielectric constants of the media 
above and below the graphene flake. For example e «  2.5 
for graphene placed on SiO 2 with the other side being 
exposed to air, while e «  1 for suspended graphene. The 
quantity £n (r) = n (r) — n0 is the local density measured 
relative to a “background” value, n0, which is defined by

2
= A  + nc

(13)

Here 2/A0 is the density of a neutral graphene sheet, 
A 0 = 3\/3a0/2 ^  0.052 nm2 being the area of the unit 
cell in the honeycomb lattice, and nc is the spatially av
eraged carrier density, which can be positive or negative 
and controlled by gate voltages.

The third term in VKS ( r ), Vxc(r ), is the scalar 
exchange-correlation potential. This is a functional of 
the ground-state density, which is known only approxi
mately. Following Ref. 40 we employ the local-density 
approximation (LD A ),

Vxc (r  ) = v X r  (n)| ( )xc v 'ln ^n c (r) (14)

where vXC?m (n) is the T  = 0 exchange-correlation poten
tial of a uniform 2D liquid of massless Dirac fermions40,50 
with carrier density n. vXC?m (n) is related to the ground- 
state energy per excess carrier £exc (n) by

,.hom(n) =
d  [nfexc (n)] 

dn
(15)

The carrier density nc(r ) is the density relative to that 
of a uniform neutral graphene sheet:

2
nc( r ) = n (r ) — —  = nc + 5n(r) . (16)

The expression used for £exc (n) depends on the zero-of- 
energy, which is normally50 chosen so that (n = 0) = 0. xc

xc
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B . Technical remarks on the method of solution

In  order to solve Eq. (7) we have followed the same 
technique adopted in Ref. 40, i.e. we use a square sim
ulation box of size L  x L  with periodic boundary con
ditions and conveniently expand the spinors $> (r) in a 
plane-wave basis. We discretize real space restricting r  
to a square mesh r j  = ( i6, j 6), with i, j  = 1 ,..., N . Here 
6 = L /N  is the spacing of the mesh. Fourier transforms 
f  (k ) of real-space functions f  (r ) are calculated by means 
of a standard fast-Fourier-transform algorithm51 that al
lows us to compute f  on the set of discrete wavevectors 
k

(kæ,̂ 7 ky,j
) 2n (
) = l  (nx (17)

< N /2 (or, equivalently, 0 <with — N/2 < nXji,i 
< N ).

In  momentum space Eq. (7) reads

^ (fc |{a • [v p + A (r)]+  V K s(r)}|fe ')$>(&') = £a$ a (&) , 
k'

(18)
and the problem is thus mapped into the diagonaliza- 
tion of the KSD  matrix % KSD = (k |{^  • [vp + A (r )] + 

VKS(r )}|k '). The matrix elements in Eq. (18) can be 
computed either analytically or numerically. More specif
ically, the matrix elements of the kinetic Hamiltonian are 
given by

(k| vct • p |k') = h va  • fe;6kjk' . (19)

The matrix elements of the Hartree term are given by

(k |A V H (r)|k ')
2ne2

e|k — k ' | Jn (k  — k ') , (20)

where 6n(fc) = n(fc) — n06k0 is the Fourier transform of 
the charge neutral density 6n (r), introduced above.

The matrix elements of the external, vector, and 
exchange-correlation potentials can be calculated numer
ically from

(k |f(r )|k ') = j ^ J d2r  f  (r ) (2 1 )

where f  (r ) is either Vext(r), VXc(r ), A æ(r), or A y (r).
In  practice the diagonalization of the KSD  matrix 

HfcS? requires the introduction of a momentum space 
cut-off40, kæ,j, ky,j G [—kc, +kc], which does not exceed 
the Brillouin-zone boundary defined by our real-space 
discretization: kc < n/J. kc defines the range of mo
menta used in the expansion of the Hamiltonian 
and thus defines its dimension dH:

dH = 2 x (2  x ^  + 1 (22)

The factor of 2 here is due to the sublattice pseudospin 
degree-of-freedom. Given a value of kc the Kohn-Sham- 
Dirac matrix % K S? has dH eigenvalues, labeled by the 
discrete index A = 1 , . . . ,  dH.

Let us consider a neutral-on-average graphene sheet 
(nc = 0) with areal extension L  x L . The total number 
of electrons in such sheet is

2 2 N real = x LA 0 (23)

The total number of electronic states available in our cal
culations is gdH. To simulate a neutral-on-average sheet 
we clearly need half of these states:

1 7 (  Lk cNsimul = 2  x gdH = g x 1 2  x —  + 1 (24)

In Ref. 40 the authors enforced the following condition

N simul — N real •> (25)

which physically means that all the electrons in the n- 
band are simulated. This leads to the relation 2L2/A 0 = 
g [2Lkc/(2n) + 1]2 which links the momentum-space cut
off kc and the size of the system L. This relationship is 
however too restrictive since one would need very large 
values of kc (much larger than those prescribed by the 
computational lim it) to simulate flakes with an areal ex
tension of experimental interest52. Therefore, the re
quirement (25) severely affects the possibility of perform
ing quantitative predictions for large systems. There are 
also more physical reasons for lifting the requirement 
(25): the massless Dirac fermion model2 does not de
scribe all electrons in the n-bands but only a fraction 
n  ^  1 of them. We thus have decided to relax the con
straint (25) allowing N s;mul = N reai, i.e.

Nsimul = n' Nreal (26)

with 0 < n' ^  1. Letting n' be different from unity we 
can choose L  and kc independently. The factor n' can be 
tuned in order to fulfill Eqs. (23), (24), and (26):

n' = A  = 5 [2Lkc/(2n) + 1]2 ¿ L i  . (27)

For example, we can choose L  «  22 nm (as in the case of 
Fig. 1) and fix kc according to our numerical capabilities, 
say kc = 15 x (2n/L). Substituting these values for L  and 
kc in Eq. (27), one obtains that the fraction of simulated 
electrons in this case is n' ~  0 .2 , i.e. 20%  of the electrons 
in graphene’s n-band. We remark that the existence of 
a momentum space cut-off kc implies a minimum spatial 
resolution,

A = —Ares j kc
(28)

which in this case would be Ares ~  1*5 nm, and thus suffi
cient to resolve rather short-wavelength spatial structures 
in the induced carrier density.

2
k nj

2
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The arguments above can be readily generalized to the 
case of a doped graphene sheet (nc = 0): in this case 
Eq. (26) reads

Nsimul = + ncL2 = n' 2 + ncL 2 . (29) 
2 A 0

We clearly see that even at finite doping we can arbitrar
ily choose L  and kc, with a fraction of simulated electrons 
which is still given by Eq. (27).

Before concluding this Section we recall that the ex
change and correlation potential vX ^  (n) introduced in 
Sect. I I I B  depends on carrier density nc through the di- 
mensionless quantity50 A = kmax/kF , where kmax is an 
ultraviolet cut-off and 4 n |nc|/g is the Fermi wave
number. We take kmax to be such that

(30)

where n is a dimensionless number, 0 < n < 1 , which 
should be assigned a value according to the wave vec
tor range over which the continuum model describes 
graphene53. Thus, making use of Eqs. (27) and (30), 
we find

A = 2n
A 0 1 n c1 (31)

However, it is physically reasonable to identify n and n' 
since they both refer, directly or indirectly, to the range 
of applicability of the massless Dirac fermion model to de
scribe electrons in graphene. Consequently, we see that, 
taking n = n', A is independent of the choice of n while 
it depends on ncL 2, i.e. on the average carrier density 
in units of 1/L2, and on the dimension of the KSD  
Hamiltonian (or equivalently on kc).

FIG . 4: (Color online) Top panel: fully self-consistent elec
tronic density profile Sn(r) (in units of 1012 cm-2) in a 
corrugated graphene sheet. The data reported in this fig
ure have been obtained by setting g1 = 3  eV, a ee = 0.9 
(this value of aee is the commonly used value for a graphene 
sheet on a SiO2 substrate), and an average carrier density 
nc — 0.8 x 1012 cm-2. Bottom panel: same as in the top 
panel but for aee = 2.2 (this value of aee corresponds to sus
pended graphene).

C. Num erical results

In Fig. 4-10 we report our main numerical results ob
tained from the self-consistent solution of the KSD  equa
tion (7) with a momentum-space cut-off kc = 15 x (2n/L). 
The induced density profiles depend on the strength of 
electron-electron interactions which is measured by the 
dimensionless fine-structure constant

a ee — ehv
(32)

In Fig. 4 we illustrate the fully self-consistent electronic 
density profile 6n (r) in the ripple-induced scalar and vec
tor potentials shown in Fig. 3. B y  “fully self-consistent” 
we mean that 6n (r ) has been obtained with the inclusion 
of both Hartree and scalar LD A  exchange-correlation po
tentials. In this figure we have reported results for two 
values of graphene’s fine structure constant, a ee = 0.9 
(graphene on SiO 2) and 2.2 (suspended graphene). We

clearly see electron-hole puddles with a typical size of a 
few nanometers.

In Fig. 5 we show one-dimensional cuts of 6n (r ) for the 
same system parameters as in Fig. 4 to better address the 
separate role of Hartree and exchange-correlation poten
tials. From the top panel in Fig. 5 we clearly see what 
is the role of electron-electron interactions and screen
ing: the amplitude of the density fluctuations is indeed 
completely controlled by interactions. From the bottom 
panel we see how, for this particular set of parameters, 
scalar LD A  exchange and correlations effects seem to be 
playing only a minor (quantitative) role.

As in Ref. 40, it is interesting to compare the reduc
tion in the amplitude of density fluctuations seen in the 
top panel of Fig. 5 with what would be expected in a lin
ear screening approximation. Assuming that the biggest 
role is played by the scalar potential V1  (this assump
tion w ill be justified below in Sect. I I IC ) , within linear- 
response theory (LR T ) the induced density change (in

2e
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x  (nm)

FIG . 5: (Color online) Top panel: a one-dimensional plot of 
Sn(r) (as a function of x in nm for y = 11.3 nm) for the 
same set of parameters as in the lower panel of Fig. 4. Here 
we have reported data for noninteracting electrons (circles), 
data obtained including only the Hartree term in Eq. (8) 
(triangles), and data obtained including both Hartree and 
exchange-correlation potentials (squares). Note that electron- 
electron interactions completely control the magnitude of den
sity fluctuations and that, on this scale, the data obtained 
including exchange-correlation effects (squares) are indistin
guishable from the data obtained with the inclusion of the 
Hartree potential only (triangles). Bottom panel: same as 
in the top panel but with the exclusion of data for noninter
acting electrons. Differences between data labeled by squares 
and by triangles can be seen on this scale. These differences 
are however only quantitative and not qualitative.

Fourier transform) is given by

xo(q)Jn (q )
£(q)

(33)

where xo(q) is the static T  = 0 Lindhard function of a 
homogeneous noninteracting massless Dirac fermion fluid 
(see for example Ref. 50),

xo(q) = - v  (£ f) -  J Î - F  + <ÈF- G Ì  ̂
16ftv q J + 4nhv

(34)
and e(q) = 1 — vqxo(q) is the static random-phase-

0.6

0.4

| 0.2
so 0.0

Ol
O -0 .2i—l

£
l-o -0 .4

-0 .6

-0 .8

FIG . 6: (Color online) A one-dimensional plot of 5n(r) (as 
a function of x in nm for y = 11.3 nm) for the same set of 
parameters as in Fig. 5. Here we compare results based on the 
solution of Eq. (7) with electron-electron interactions treated 
at the Hartree level (triangles) with those based on linear- 
response theory (hexagons), Eqs. (33)-(36). Linear screening 
seems to describe very well the data.

approximation dielectric function:

, ( , )  — 1 + + ,|a e e F  ( ^ ) - f  G  ( )  - (35)

Here v(eF ) — gkp/(2n^v) is the density-of-states at the 
Fermi level, vq — 2ne2/(eq) in the Fourier transform of 
the electron-electron interaction, qTF — g « e e i s  the 
Thomas-Fermi screening vector, and, finally,

2
F  (x) = 1 ---arcsinn
G (x) = \J l  — x2 0(1 — x)

2 (1 + x )— 1 1 1 —x| . (36)

Note that F (x) = G (x) = 0 for x > 1 (i.e. q < 2kF ). 
In  Fig. 6 we show a comparison between the prediction 
of LRT , based on the Fourier transform of Eq. (33), and 
the non-linear screening result based on the solution of 
Eq. (7) with the Hartree potential only. We thus see 
that, maybe surprisingly, LR T  explains the data quanti
tatively.

In  Fig. 7 we show fully self-consistent electronic density 
profiles obtained for a much larger value of the scalar 
gi constant. These results have to be compared with 
those reported in Fig. 4. As expected, in the case g1 = 
16 eV the amplitude of the density fluctuations is much 
larger. A  direct comparison has been reported in the 
one-dimensional cuts in Fig. 8.

The dependence of the self-consistent density profiles 
on the doping level nc is shown in Fig. 9: from this plot, 
and especially from the inset, we see that the ampli
tude of the density fluctuations seem to saturate slowly 
with increasing nc, as already found40,41 in the case of 
self-consistent screening calculations in the presence of 
randomly-distributed charged impurities.

7
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FIG . 9: (Color online) One-dimensional plots of the self- 
consistent density profiles (as functions of x in nm for y = 
21.1 nm) for different values of doping: nc — 0.8 x 1012 cm-2 
(circles), nc — 3.96 x 1012 cm-2 (triangles), and nc — 
3.17 x 1013 cm 2 (squares). The data reported in this fig
ure have been obtained by setting g1 = 3 eV and aee = 2.2. 
The inset shows 5n(r) (in units of 1012 cm-2) at a given point 
r  in space as a function of the average carrier density nc (in 
units of 1012 cm-2).

D. Self-consistent electronic density in the 
presence of a model ripple

FIG . 7: (Color online) Same as in Fig. 4 but for g\ =  16 eV.

2.5 
2.0 

iT  1-5
a i -oo

S 0.5 o
^  0.0 
•I -0.5 

- 1.0 
-1.5

0 5 10 15 20 
x (nm)

FIG . 8: (Color online) A one-dimensional plot of the fully self- 
consistent ^n(r) (as a function of x in nm for y = 15.8 nm) ob
tained using g1 =3 eV (circles) or g1 = 16 eV (triangles). The 
other parameters are aee = 2.2 and nc — 0.82 x 1012 cm-2.

Before concluding this Section we stress again that 
there is no evident correlation between the out-of
plane topographic corrugations and the spatial structures 
(electron-hole puddles) in the density profiles, as already 
pointed out in Sect. I IB .  This is highlighted in Fig. 10.

As emphasized in Sects. I I B  and IIIC ,  in-plane and 
out-of-plane displacements have the same impact on the 
corrugation-induced scalar and vector potentials: this re
sults into complicated spatial patterns of the carrier den
sity with no immediate link with the topographic corru
gations. In this Section we present the self-consistent 
electronic density profile in the presence of a simple 
model ripple which exhibits displacements only in the 
z direction.

For concreteness, following Ref. 54, we consider the 
following Gaussian out-of-plane displacement:

uz ( r ) = A exp x2el + y2el)  , (37)

where xrel = x — L/2 and yrel = y — L/2. The scalar and 
vector potentials can be easily computed from Eqs. (2) 
and (3 ), leading to the following expressions:

V1 ( r ) = 25l ̂  (xrel + yrel) ex^ — 2 ̂  ^  ^  )  (38)

and

V2( r ) = 2g2 A  (xrel + iyrel)2 exp ^ — 2 ^  + y ê̂  .

(39)
The fully self-consistent density profile 6n (r ) calcu

lated with the use of the potentials (38) and (39) is re
ported in Fig. 1 1 . These data show that when in-plane 
displacements are neglected the correlation between the
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FIG . 10: (Color online) Three-dimensional plot of the fully 
self-consistent continuum-model Dirac-Kohn-Sham density 
profile reported directly on the corrugated graphene sample 
shown in Fig. 1. More precisely, the color-coding of the hexag
onal bonds labels the local value of ^n(r) shown in the two
dimensional color plot reported in the bottom panel of Fig. 4. 
Note that there is no simple correspondence between the out- 
of-plane topographic corrugations and the density profile.

FIG . 11: (Color online) Top left panel: color plot of the an
alytical scalar potential V1 (r) (in units of meV) reported in 
Eq. (38). The parameters used are: g1 =3 eV, A = 0.05L = 
1.1 nm, and b = 0.2L = 4.5 nm. Top right panel: real part of 
the analytical potential V2 (r) (in units of meV) in Eq. (39). 
Bottom left panel: imaginary part of the potential V2 (r ) (in 
units of meV) in Eq. (39). Bottom right panel: fully self- 
consistent electronic density profile (in units of 1012 cm-2) 
calculated in the presence of the scalar and vector potentials 
shown in the other panels. This numerical calculation has 
been performed using aee = 2.2 and nc — 3.96 x 1012 cm-2.

density profile and the topography of the corrugated 
graphene sheet [Eq. (37)] is much more transparent. Note 
that the oscillations in Jn (r ) stem from the fact that the 
quantity |Vuz(r )|2, which controls the scalar potential 
V i, is maximal at |r | æ b.

E . Comments on the density response to a purely 
vector potential

A  natural question might arise at this point: what is 
the relative role of V1  and V2 in determining the induced 
density 6n (r)?  In this Section we study the density re
sponse of a system of massless Dirac fermions to a purely 
vector potential.

Let us begin for simplicity from a noninteracting sys
tem: in this case we can prove that 6n (r) = 0, inde
pendently of doping. This can be easily seen within the 
framework of LRT : in this case

J n (q ) = W  (q)A i(q ) (40)
iGx,y

where 6n(q ) and A*(q) are the Fourier transforms of 
6n (r ) and A * (r), and Xnf (q) = lim^ 0  Xnf (q,^) is a 
static linear-response function. It turns out (see Ap
pendix A for a formal proof) that

^Xnn (q,^ ) (41)

where xnn (q ,^ ) is the density-density response function 
of a noninteracting system of massless Dirac fermions 
(see for example Ref. 50 and references therein). Because 
Xnn (q ,^ ) is well behaved in the static lim it we immedi
ately find that Xnf (q) = 0.

An identical conclusion can be reached by invoking 
Furry’s theorem55,56, which applies independently of the 
strength of the external vector potential A  (and thus also 
beyond the regime of applicability of LR T ) and in the 
presence of electron-electron interactions. The theorem, 
however, is valid only for systems with an electron-hole- 
symmetric spectrum. We thus expect 6n (r ) = 0 only in 
the case of a neutral-on-average system, while we expect 
a finite induced density for a finite value of nc.

We have checked these expectations numerically. We 
have performed calculations in the presence of the scalar 
V1  component only and compared the calculated induced 
density, 6ns (r ), with that obtained in the presence of 
both scalar and vector potentials, 6nToT ( r ). In Fig. 12 
we report the results for a ee = 0: we clearly see, espe
cially from the bottom panel, that even at finite average 
carrier density the amplitude of the spatial fluctuations 
induced by the vector potential only is rather small.

Differences between 6ns (r ) and 6nToT (r ) have been 
quantified by the value of the following dimensionless pa
rameter,

£ = \Z||JnTOT (r ) — Jn S (r  )|1 
\/||JnTOT (r  )|1 + \J  ||JnS (r)|1

(42)
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FIG . 12: (Color online) Top panel: a one-dimensional plot of 
the noninteracting (aee = 0) density profile Jn (r ) (as a func
tion of x in nm for y = 12.3 nm) obtained solving the Dirac 
equation in the presence of both scalar and vector potentials 
(circles) or of the scalar potential only (triangles). Bottom 
panel: a one-dimensional plot of the noninteracting density 
profile Jn (r) (as a function of x in nm for y = 12.3 nm) ob
tained solving the Dirac equation in the presence of the vector 
potential only. The data reported here refer to g1 = 3 eV and 
nc ~  3.96 x 1012 cm-2. From both panels we conclude that 
density fluctuations are largely controlled by the scalar po
tential.

F . Electronic density in the presence of both 
ripples and charged im purities

Before concluding we would like to briefly illustrate 
how the presence of the ripples modifies qualitatively the 
density landscape induced by a random distribution of 
charged impurities40,41. In  this Section we report nu
merical results based on the self-consistent solution of 
Eq. (7) in the presence of a scalar potential Vext(r ) given 
by:

Vext(r) = V i(r ) + Vimp(r) . (44)

Here Vimp(r ) is a scalar potential due to charged impu-
rities40,

Vimp(r)
Nimp

— E
Ze2

e \J  |r — R *|2 + d2
(45)

where R* are random positions in the supercell and d is 
the distance between the graphene sheet and the plane 
where the impurities are located. For simplicity, all 
charges have been taken to have the same Z  in Eq. (45).

In  Fig. 13 we show fully self-consistent density pro
files of massless Dirac fermions subjected to the scalar 
potential of N imp = 5 charged impurities: in the top 
panel we show 6n (r) calculated in the absence of rip
ples (g1 = g2 = 0), while in the bottom panel we have 
included them. We clearly see how the smooth land
scape of electron-hole puddles in the presence of charged 
impurities only (top panel) is dramatically affected by 
the presence of corrugations (bottom panel), which in
duce additional spatial variations with a much smaller 
length scale (probably well below the current spatial ex
perimental resolution of probes like S E T 24 or ST M 30). 
Once again, we would like to emphasize that these small- 
wavelength carrier-density oscillations are due to a com
plicated interference between the effects of out-of-plane 
and in-plane atomic displacements.

IV . C O N C LU S IO N S

where

||O (r)||2 = ƒ  d2r |O (r )|2 (43)

is the usual L 2 norm. In the case nc = 0 we find 
e ~  3 x 10-4, which is below our numerical precision 
(0.005): within the accuracy of the calculation thus 
6nTOT(r ) = 6ns(r ). In  the calculations with finite car
rier density, however, we find much higher values of e: 
for nc ~  3.96 x 1012 cm-2 we find e ~  0.02, while for 
nc ~  3.17 x 1013 cm-2 we find e ~  0.03.

In  summary, we have presented quantitative calcula
tions of scalar and vector potentials induced by corruga
tions in single-layer graphene sheets. We have found that 
the contributions from in-plane and out-of-plane atomic 
displacements are both of the same order and that this 
does not lead to evident correlations between the out-of
plane topographic corrugations and the induced scalar 
and vector potentials.

We have then used these potentials to calculate self- 
consistently the induced electronic density distribution 
in the presence of electron-electron interactions. To this 
end we have generalized the Kohn-Sham-Dirac theory of 
Ref. 40 to treat situations with spatial-dependent vec
tor potentials. We have discovered that spatial density 
fluctuations are largely controlled by the scalar poten
tial, especially in nearly-neutral graphene sheets, and
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FIG . 13: (Color online) Top panel: fully self-consistent elec
tronic density profile (in units of 1012 cm-2) calculated from 
the solution of Eq. (7) in the presence of Nimp = 5 charged 
impurities with charge Z  = +1 (donors). The white circles 
label the position of the charges on a plane located at a dis
tance d — 2 nm from the graphene sheet. Bottom panel: same 
as in the top panel but in the presence of ripples too. The 
data reported here have been obtained by setting g1 = 3 eV, 
aee = 0.9, and nc ~ 3.96 x 1012 cm-2.

Appendix A : Density response to a vector potential

In this Appendix we demonstrate that within LR T  an 
external vector potential does not induce density mod
ulations in a system of noninteracting massless Dirac 
fermions (M DFs).

We consider the following Hamiltonian (h = 1 in this 
Appendix):

(A 1 )

where

2 r
Ho = - iv  E  y d 2 r  (r)^a^  • V^g  (r  ) (A 2)

a ,£=1

is the M D F kinetic Hamiltonian and

H  = [  d2r  A ( r , t) • j ( r )  , (A3)

A (r  , t) being a weak perturbing vector potential acting 
on the system. Here we have introduced the well-known 
M D F current operator4

i (r ) = v Ë  ƒ  d2r  ^  (r - ¡ / ^  (r ) . (A4)
a,^ =1

The perturbing vector potential could in principle induce 
not only a current but also a density modulation. W ith in  
LR T  the induced density can be written in the form57

6n (r ,t ) = ^  J  dr J  d2r ' xn/  (r, r ', t)A ^ (r ', t — t ) , 

'  0 (A5)
where

that this creates complicated short-wavelength (a few 
nm) electron-hole puddles which do not exhibit evident 
correlations with the topography of the sheet.

In the future we would like to investigate more deeply 
the role of the exchange-correlation corrections to the 
vector potential49, especially in view of the fact that 
the exchange-correlation contribution to the scalar Kohn- 
Sham potential, which has been studied here, has been 
found to play a minor role.
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Xn/ (r, r ' ,t) = —i ([n (r ,t ) , i  ( r ' )])0 , (A6)

with t = {x, y }, is the density-current linear response 
function. For a homogeneous and isotropic system this 
relation takes a much simpler form when written in 
Fourier transform with respect to space and time:

6n(q , ^ ) = E XnZ (q ,u )A *(q ,w ) , (A7)

with xn/ (q , w) = ( (nq; ) )^. Here we have introduced 
the Kubo product57

r
((A ; B ) )w = — i lim ƒ dt e*wte_ei ([A (t), B (0)])o . 

e^0+ J  o
(A 8)

From symmetry arguments (q , w) must transform
as a vector: since q is the only vector available we have

Xn/ (q ) = Xnj (q,W) (A9)
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where Xnj(q, w) depends only on the magnitude q of the 
vector q. Thus Eq. (A7) becomes

Jn (q , —) = Xnj(q, —)
q • A (q ,—)

q
(A10)

This result implies that only longitudinal vector poten
tials can produce a density response.

The evaluation of Xnj(q, w) is straightforward. Indeed, 
taking q = qx along the x-direction, we have

where xnn(q, w) and xL (q, w) are the density-density50 
and longitudinal current-current58 response functions, 
respectively. In  Eq. (A11) we have used the identity 
[A, B ] = ([B^, A t])t, the following identity valid for Kubo 
products ((A ; B ) )w = ([A, B])o/w + i((d tA; B ) )w/w, and 
Eq. (9) in Ref. 58. Thus, assuming continuity of the re
sponse function, relation (A 1 1 ) can be extrapolated to 
the static lim it (w ^  0) and implies that a static vector 
potential does not give rise to density modulations, since

Xnj(q,w) = Xnjx (qx,w ) = ((ñq; ))q  J -q )

1  ( [ñq J- q  ])0 + ¿J ((ÍqX; Í-q  ))w 

1  ([ÍqX ,ñ -q ])0 + - X L (q,w)

= —Xnn(-,w) , 
q

(A11)

lim Xnj(q,w ) = lim —Xnn(q, —) = 0 . (A12)w^o w^o q

For readers who feel uncomfortable with the properties 
of Kubo products we remark that Eq. (A11) can also be 
proven explicitly by using the exact eigenstate represen
tation for xnj* (qx, w) (see Sect. 3.2.3 in Ref. 57).
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