3,225 research outputs found
Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity
The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5 nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding
Recommended from our members
Si photocathode with Ag-supported dendritic Cu catalyst for CO2 reduction
Si photocathodes integrated with Ag-supported dendritic Cu catalysts are used to perform light-driven reduction of CO2 to C2 and C3 products in aqueous solution. A back illumination geometry with an n-type Si absorber was used to permit the use of absorbing metallic catalysts. Selective carrier collection was accomplished by a p+ implantation on the illumination side and an n+ implantation followed by atomic layer deposition of TiO2 on the electrolyte site. The Ag-supported dendritic Cu CO2 reduction catalyst was formed by evaporation of Ag followed by high-rate electrodeposition of Cu to form a high surface area structure. Under simulated 1 sun illumination in 0.1 M CsHCO3 saturated with CO2, the photovoltage generated by the Si (∼600 mV) enables C2 and C3 products to be produced at -0.4 vs. RHE. Texturing of both sides of the Si increases the light-limited current density, due to reduced reflection on the illumination side, and also deceases the onset potential. Under simulated diurnal illumination conditions photocathodes maintain over 60% faradaic efficiency to hydrocarbon and oxygenate products (mainly ethylene, ethanol, propanol) for several days. After 10 days of testing, contamination from the counter electrode is observed, which causes an increase in hydrogen production. This effect is mitigated by a regeneration procedure which restores the original catalyst selectivity. A tandem, self-powered CO2 reduction device was formed by coupling a Si photocathode with two series-connected semitransparent CH3NH3PbI3 perovskite solar cells, achieving an efficiency for the conversion of sunlight to hydrocarbons and oxygenates of 1.5% (3.5% for all products)
Electron-Beam Manipulation of Silicon Dopants in Graphene
The direct manipulation of individual atoms in materials using scanning probe
microscopy has been a seminal achievement of nanotechnology. Recent advances in
imaging resolution and sample stability have made scanning transmission
electron microscopy a promising alternative for single-atom manipulation of
covalently bound materials. Pioneering experiments using an atomically focused
electron beam have demonstrated the directed movement of silicon atoms over a
handful of sites within the graphene lattice. Here, we achieve a much greater
degree of control, allowing us to precisely move silicon impurities along an
extended path, circulating a single hexagon, or back and forth between the two
graphene sublattices. Even with manual operation, our manipulation rate is
already comparable to the state-of-the-art in any atomically precise technique.
We further explore the influence of electron energy on the manipulation rate,
supported by improved theoretical modeling taking into account the vibrations
of atoms near the impurities, and implement feedback to detect manipulation
events in real time. In addition to atomic-level engineering of its structure
and properties, graphene also provides an excellent platform for refining the
accuracy of quantitative models and for the development of automated
manipulation.Comment: 5 figures, 4 supporting figure
How does Internationalisation affect the productivity of R&D activities in large innovative firms? A conditional nonparametric investigation
This work explores the relationship between multinational R&D and innovation productivity among top corporate knowledge and R&D producers by adopting a twofold concept of internationalisation: (1) the firm’s degree of R&D internationalisation, and (2) the firm’s geographic diversification. We model the patent production process with an appropriate and robust conditional Data Envelopment Analysis (DEA) estimator, using a unique database of firms that matches financial indicators and patent information. Our results reinforce the fundamental role of internationalisation in the knowledge production process when the internationalisation process is properly and strategically managed. We interpret our empirical evidence through the theoretical lens of the learning theory of internationalisation, and we postulate that a high R&D intensity is a key driver to overcoming the challenges of internationalisation
Vascular Burden Predicts Gait, Mood, and Executive Function Disturbances in Older Adults with Mild Cognitive Impairment: Results from the Gait and Brain Study
International audienc
Performance evaluation of a Wi-Fi-based multi-node network for distributed audio-visual sensors
The experimental research described in this manuscript proposes a complete network system for distributed multimedia acquisition by mobile remote nodes, streaming to a central unit, and centralized real-time processing of the collected signals. Particular attention is placed on the hardware structure of the system and on the research of the best network performances for an efficient and secure streaming. Specifically, these acoustic and video sensors, microphone arrays and video cameras respectively, can be employed in any robotic vehicles and systems, both mobile and fixed. The main objective is to intercept unidentified sources, like any kind of vehicles or robotic vehicles, drones, or people whose identity is not a-priory known whose instantaneous location and trajectory are also unknown. The proposed multimedia network infrastructure is analysed and studied in terms of efficiency and robustness, and experiments are conducted on the field to validate it. The hardware and software components of the system were developed using suitable technologies and multimedia transmission protocols to meet the requirements and constraints of computation performance, energy efficiency, and data transmission security
Bismuth-Based Coordination Polymers with Efficient Aggregation-Induced Phosphorescence and Reversible Mechanochromic Luminescence
Two bismuth coordination polymers (CPs), (TBA)[BiBr4(bp4mo)] (TBA=tetrabutylammonium) and [BiBr3(bp4mo)2], which are based on the rarely used simple ditopic ligand N-oxide-4,4′-bipyridine (bp4mo), show mechanochromic luminescence (MCL). High solid-state phosphorescence quantum yields of up to 85 % were determined for (TBA)[BiBr4(bp4mo)] (λem=540 nm). Thorough investigations of the luminescence properties combined with DFT and TDDFT calculations revealed that the emission is due to aggregation-induced phosphorescence (AIP). Upon grinding, both samples became amorphous, and their luminescence changed from yellow to orange and red, respectively. Heating or exposure to water vapor led to the recovery of the initial luminescence. These materials are the first examples of mechanochromic phosphors based on bismuth(III)
Aggregation induced phosphorescent N-oxyde-2,2′-bipyridine bismuth complexes and polymorphism-dependent emission
Unprecedented bismuth complexes, based on the rarely used ditopic ligand N-oxide-2,2′-bipyridine (bp2mo), crystallizing as three polymorphs, α- (1), β- (2) and γ-[BiBr3(bp2mo)2] (3), exhibit phosphorescence with a quantum yield up to 17% for the crystal phase (1), while the complex displays a weak fluorescence in solution. A study of the luminescence properties combined with DFT/TDDFT calculations reveals that the lighting phenomenon originated by aggregation induced phosphorescence correlated with the weak intermolecular interactions present in the different crystal phases
Ultra-low pressure hydrocephalic state in NPH: benefits of therapeutic siphoning with adjustable anti-gravity valves
Background:
Idiopathic normal-pressure hydrocephalus (NPH) is a condition of the elderly treated by ventriculoperitoneal shunt (VP) insertion. A subset of NPH patients respond only temporarily to shunt insertion despite low valve opening pressure. This study aims to describe our experience of patients who benefit from further CSF drainage by adding adjustable antigravity valves and draining CSF at ultra-low pressure.
Methods:
Single-centre retrospective case series of patients undergoing shunt valve revision from an adjustable differential pressure valve with fixed antigravity unit to a system incorporating an adjustable gravitational valve (Miethke proSA). Patients were screened from a database of NPH patients undergoing CSF diversion over 10 consecutive years (April 2008–April 2018). Clinical records were retrospectively reviewed for interventions and clinical outcomes.
Results
Nineteen (10F:9M) patients underwent elective VP shunt revision to a system incorporating an adjustable gravitational valve. Mean age 77.1 ± 7.1 years (mean ± SD). Eleven patients (58%) showed significant improvement in walking speed following shunt revision. Fourteen patients/carers (74%) reported subjective improvements in symptoms following shunt revision.
Conclusions:
Patients presenting symptoms relapse following VP shunting may represent a group of patients with ultra-low-pressure hydrocephalus, for whom further CSF drainage may lead to an improvement in symptoms. These cases may benefit from shunt revision with an adjustable gravitational valve, adjustment of which can lead to controlled siphoning of CSF and drain CSF despite ultra-low CSF pressure
- …