466 research outputs found

    Evolution of Complexity

    Full text link
    The evolution of complexity has been a central theme for Biology [2] and Artificial Life research [1]. It is generally agreed that complexity has increased in our universe, giving way to life, multi-cellularity, societies, and systems of higher complexities. However, the mechanisms behind the complexification and its relation to evolution are not well understood. Moreover complexification can be used to mean different things in different contexts. For example, complexification has been interpreted as a process of diversification between evolving units [2] or as a scaling process related to the idea of transitions between different levels of complexity [7]. Understanding the difference or overlap between the mechanisms involved in both situations is mandatory to create acceptable synthetic models of the process, as is required in Artificial Life research. (...)Comment: Introduction to Special Issu

    Dynamical Hierarchies

    No full text
    <Guest Editor's Introduction&gt

    The efficient interaction of costly punishment and commitment.

    Get PDF
    To ensure cooperation in the Prisoner's Dilemma, agents may require prior commitments from others, subject to compensations when defecting after agreeing to commit. Alternatively, agents may prefer to behave reactively, without arranging prior commitments, by simply punishing those who misbehave. These two mechanisms have been shown to promote the emergence of cooperation, yet are complementary in the way they aim to instigate cooperation. In this work, using Evolutionary Game Theory, we describe a computational model showing that there is a wide range of parameters where the combined strategy is better than either strategy by itself, leading to a significantly higher level of cooperation. Interestingly, the improvement is most significant when the cost of arranging commitments is sufficiently high and the penalty reaches a certain threshold, thereby overcoming the weaknesses of both strategies.SCOPUS: cp.pinfo:eu-repo/semantics/publishe

    Dynamic Weights in Multi-Objective Deep Reinforcement Learning

    Full text link
    Many real-world decision problems are characterized by multiple conflicting objectives which must be balanced based on their relative importance. In the dynamic weights setting the relative importance changes over time and specialized algorithms that deal with such change, such as a tabular Reinforcement Learning (RL) algorithm by Natarajan and Tadepalli (2005), are required. However, this earlier work is not feasible for RL settings that necessitate the use of function approximators. We generalize across weight changes and high-dimensional inputs by proposing a multi-objective Q-network whose outputs are conditioned on the relative importance of objectives and we introduce Diverse Experience Replay (DER) to counter the inherent non-stationarity of the Dynamic Weights setting. We perform an extensive experimental evaluation and compare our methods to adapted algorithms from Deep Multi-Task/Multi-Objective Reinforcement Learning and show that our proposed network in combination with DER dominates these adapted algorithms across weight change scenarios and problem domains

    Evolution of Commitment and Level of Participation in Public Goods Games

    Get PDF
    Before engaging in a group venture agents may require commitments from other members in the group, and based on the level of acceptance (participation) they can then decide whether it is worthwhile joining the group e ort. Here, we show in the context of Public Goods Games and using stochastic evolutionary game theory modelling, which implies imitation and mutation dynamics, that arranging prior commitments while imposing a minimal participation when interacting in groups induces agents to behave cooperatively. Our analytical and numerical results show that if the cost of arranging the commitment is su ciently small compared to the cost of cooperation, commitment arranging behavior is frequent, leading to a high level of cooperation in the population. Moreover, an optimal participation level emerges depending both on the dilemma at stake and on the cost of arranging the commitment. Namely, the harsher the common good dilemma is, and the costlier it becomes to arrange the commitment, the more participants should explicitly commit to the agreement to ensure the success of the joint venture. Furthermore, considering that commitment deals may last for more than one encounter, we show that commitment proposers can be lenient in case of short-term agreements, yet should be strict in case of long-term interactions

    Expertise Trees Resolve Knowledge Limitations in Collective Decision-Making

    Full text link
    Experts advising decision-makers are likely to display expertise which varies as a function of the problem instance. In practice, this may lead to sub-optimal or discriminatory decisions against minority cases. In this work we model such changes in depth and breadth of knowledge as a partitioning of the problem space into regions of differing expertise. We provide here new algorithms that explicitly consider and adapt to the relationship between problem instances and experts' knowledge. We first propose and highlight the drawbacks of a naive approach based on nearest neighbor queries. To address these drawbacks we then introduce a novel algorithm - expertise trees - that constructs decision trees enabling the learner to select appropriate models. We provide theoretical insights and empirically validate the improved performance of our novel approach on a range of problems for which existing methods proved to be inadequate.Comment: Proceedings of the 40th International Conference on Machine Learning (2023

    Dealing with Expert Bias in Collective Decision-Making

    Full text link
    Quite some real-world problems can be formulated as decision-making problems wherein one must repeatedly make an appropriate choice from a set of alternatives. Expert judgements, whether human or artificial, can help in taking correct decisions, especially when exploration of alternative solutions is costly. As expert opinions might deviate, the problem of finding the right alternative can be approached as a collective decision making problem (CDM). Current state-of-the-art approaches to solve CDM are limited by the quality of the best expert in the group, and perform poorly if experts are not qualified or if they are overly biased, thus potentially derailing the decision-making process. In this paper, we propose a new algorithmic approach based on contextual multi-armed bandit problems (CMAB) to identify and counteract such biased expertises. We explore homogeneous, heterogeneous and polarised expert groups and show that this approach is able to effectively exploit the collective expertise, irrespective of whether the provided advice is directly conducive to good performance, outperforming state-of-the-art methods, especially when the quality of the provided expertise degrades. Our novel CMAB-inspired approach achieves a higher final performance and does so while converging more rapidly than previous adaptive algorithms, especially when heterogeneous expertise is readily available

    Information theoretical quantification of cooperativity in signalling complexes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intra-cellular information exchange, propelled by cascades of interacting signalling proteins, is essential for the proper functioning and survival of cells. Now that the interactome of several organisms is being mapped and several structural mechanisms of cooperativity at the molecular level in proteins have been elucidated, the formalization of this fundamental quantity, i.e. information, in these very diverse biological contexts becomes feasible.</p> <p>Results</p> <p>We show here that Shannon's mutual information quantifies information in biological system and more specifically the cooperativity inherent to the assembly of macromolecular complexes. We show how protein complexes can be considered as particular instances of noisy communication channels. Further we show, using a portion of the p27 regulatory pathway, how classical equilibrium thermodynamic quantities such as binding affinities and chemical potentials can be used to quantify information exchange but also to determine engineering properties such as channel noise and channel capacity. As such, this information measure identifies and quantifies those protein concentrations that render the biochemical system most effective in switching between the active and inactive state of the intracellular process.</p> <p>Conclusion</p> <p>The proposed framework provides a new and original approach to analyse the effects of cooperativity in the assembly of macromolecular complexes. It shows the conditions, provided by the protein concentrations, for which a particular system acts most effectively, i.e. exchanges the most information. As such this framework opens the possibility of grasping biological qualities such as system sensitivity, robustness or plasticity directly in terms of their effect on information exchange. Although these parameters might also be derived using classical thermodynamic parameters, a recasting of biological signalling in terms of information exchange offers an alternative framework for visualising network cooperativity that might in some cases be more intuitive.</p
    corecore