105 research outputs found

    International postgraduate student learning journeys

    Get PDF
    This research set out to explore the learning journey of international students, moving from a pre-sessional English (PSE) course at UWE Bristol to postgraduate (PG) study at the University. Eight students each completed four interviews between July 2022 and July 2023, sharing their experiences of teaching and learning and how the support offered by the University impacted on how they felt about this.Common challenges in the learning experience of students included the amount of independent learning, reading and new subject vocabulary. The main factors that supported students in their learning were the pre-sessional English course; models, formative feedback, and dialogue with lecturers; and development of relevant academic skills within their PG programme.Recommendations for further consideration in improving the learning experience for international students include pastoral support, clear expectations for assignments, integrated and scaffolded academic skills development, and where possible, longer periods for master’s study

    A massive multiphase plume of gas in Abell 2390's brightest cluster galaxy

    Full text link
    We present new ALMA CO(2-1) observations tracing 2.2×10102.2 \times 10^{10} M⊙_{\odot} of molecular gas in Abell 2390's brightest cluster galaxy, where half the gas is located in a one-sided plume extending 15 kpc out from the galaxy centre. This molecular gas has a smooth and positive velocity gradient, and is receding 250 km/s faster at its farthest point than at the galaxy centre. To constrain the plume's origin, we analyse our new observations alongside existing X-ray, optical and radio data. We consider the possibility that the plume is jet-driven with lifting aided by jet inflated X-ray bubbles. Alternatively, it may have formed following a gravitational disturbance. In this case, the plume may either be a trail of gas stripped from the main galaxy by ram pressure, or more recently cooled and infalling gas. The galaxy's star formation and gas cooling rate suggest the lifespan of its molecular gas may be low compared with the plume's age -- which would favour a recently cooled plume. Molecular gas in close proximity to the active galactic nucleus is also indicated by 250 km/s wide CO(2-1) absorption against the radio core, as well as previously detected CO(1-0) and HI absorption. This absorption is optically thick and has a line of sight velocity towards the galaxy centre of 200 km/s. We discuss simple models to explain its origin.Comment: Submitted to MNRA

    A massive multiphase plume of gas in Abell 2390’s brightest cluster galaxy

    Get PDF
    We present new ALMA CO(2-1) observations tracing 2.2 × 1010 M. of molecular gas in Abell 2390’s brightest cluster galaxy, where half the gas is located in a one-sided plume extending 15 kpc out from the galaxy centre. This molecular gas has a smooth and positive velocity gradient, and is receding 250 km s−1 faster at its farthest point than at the galaxy centre. To constrain the plume’s origin, we analyse our new observations alongside existing X-ray, optical, and radio data. We consider the possibility that the plume is a jet-driven outflow with lifting aided by jet-inflated X-ray bubbles, is a trail of gas stripped from the main galaxy by ram pressure, or is formed of more recently cooled and infalling gas. The galaxy’s star formation and gas cooling rate suggest the lifespan of its molecular gas may be low compared with the plume’s age – which would favour a recently cooled plume. Molecular gas in close proximity to the active galactic nucleus is also indicated by 250 km s−1 wide CO(2-1) absorption against the radio core, as well as previously detected CO(1-0) and H I absorption. This absorption is optically thick and has a line-of-sight velocity towards the galaxy centre of 200 km s−1. We discuss simple models to explain its origin

    Financial viability of electric vehicle lithium-ion battery recycling

    Get PDF
    Economically viable electric vehicle lithium-ion battery recycling is increasingly needed; however routes to profitability are still unclear. We present a comprehensive, holistic techno-economic model as a framework to directly compare recycling locations and processes, providing a key tool for recycling cost optimization in an international battery recycling economy. We show that recycling can be economically viable, with cost/profit ranging from (−21.43 - +21.91) $·kWh(−1) but strongly depends on transport distances, wages, pack design and recycling method. Comparing commercial battery packs, the Tesla Model S emerges as the most profitable, having low disassembly costs and high revenues for its cobalt. In-country recycling is suggested, to lower emissions and transportation costs and secure the materials supply chain. Our model thus enables identification of strategies for recycling profitability

    Two distinct molecular cloud populations detected in massive galaxies

    Full text link
    We present new ALMA observations of CO, CN, CS, HCN and HCO+^{+} absorption seen against the bright and compact radio continuum sources of eight massive galaxies. Combined with archival observations, they reveal two distinct populations of molecular clouds, which we identify by combining CO emission and absorption profiles to unambiguously reveal each cloud's direction of motion and likely location. In galaxy disks, we see clouds with low velocity dispersions, low line of sight velocities and a lack of any systemic inflow or outflow. In galactic cores, we find high velocity dispersion clouds inflowing at up to 550 km/s. This provides observational evidence in favour of cold accretion onto galactic centres, which likely contributes to the fuelling of active galactic nuclei. We also see a wide range in the CO(2-1)/CO(1-0) ratios of the absorption lines. This is likely the combined effect of hierarchical substructure within the molecular clouds and continuum sources which vary in size with frequency.Comment: Submitted to MNRA

    MegaZ-LRG:a photometric redshift catalogue of one million SDSS luminous red galaxies

    Get PDF
    We describe the construction of MegaZ-LRG, a photometric redshift catalogue of over one million luminous red galaxies (LRGs) in the redshift range 0.4 i z = 0.049 averaged over all galaxies, and σz = 0.040 for a brighter subsample (i < 19.0). The catalogue is expected to contain ~5 per cent stellar contamination. The ANNz code is used to compute a refined star/galaxy probability based on a range of photometric parameters; this allows the contamination fraction to be reduced to 2 per cent with negligible loss of genuine galaxies. The MegaZ-LRG catalogue is publicly available on the World Wide Web from http://www.2slaq.info

    Radio galaxies in the 2SLAQ Luminous Red Galaxy Survey - I. The evolution of low-power radio galaxies to z~ 0.7

    Get PDF
    We have combined optical data from the 2dF-SDSS (Sloan Digital Sky Survey) LRG (Luminous Red Galaxy) and QSO (quasi-stellar object) (2SLAQ) redshift survey with radio measurements from the 1.4 GHz VLA (Very Large Array) FIRST (Faint Images of the Radio Sky at Twenty-cm) and NVSS (NRAO VLA Sky Survey) surveys to identify a volume-limited sample of 391 radio galaxies at redshift 0.4 < z < 0.7. By determining an accurate radio luminosity function for luminous early-type galaxies in this redshift range, we can investigate the cosmic evolution of the radio-galaxy population over a wide range in radio luminosity. The low-power radio galaxies in our LRG sample (those with 1.4 GHz radio luminosities in the range 1024 to 1025 W Hz−1, corresponding to Fanaroff–Riley I (FR I) radio galaxies in the local Universe) undergo significant cosmic evolution over the redshift range 0 k, where k= 2.0 ± 0.3. Our results appear to rule out (at the 6–7σ level) models in which low-power radio galaxies undergo no cosmic evolution. The most powerful radio galaxies in our sample (with radio luminosities above 1026 W Hz−1) may undergo more rapid evolution over the same redshift range. The evolution seen in the low-power radio-galaxy population implies that the total energy input into massive early-type galaxies from active galactic nucleus (AGN) heating increases with redshift, and was at least 50 per cent higher at z~ 0.55 (the median redshift of the 2SLAQ LRG sample) than in the local universe

    Constraining cold accretion onto supermassive black holes:molecular gas in the cores of eight brightest cluster galaxies revealed by joint CO and CN absorption

    Get PDF
    To advance our understanding of the fuelling and feedback processes which power the Universe's most massive black holes, we require a significant increase in our knowledge of the molecular gas which exists in their immediate surroundings. However, the behaviour of this gas is poorly understood due to the difficulties associated with observing it directly. We report on a survey of 18 brightest cluster galaxies lying in cool cores, from which we detect molecular gas in the core regions of eight via carbon monoxide (CO), cyanide (CN) and silicon monoxide (SiO) absorption lines. These absorption lines are produced by cold molecular gas clouds which lie along the line of sight to the bright continuum sources at the galaxy centres. As such, they can be used to determine many properties of the molecular gas which may go on to fuel supermassive black hole accretion and AGN feedback mechanisms. The absorption regions detected have velocities ranging from -45 to 283 km s−1^{-1} relative to the systemic velocity of the galaxy, and have a bias for motion towards the host supermassive black hole. We find that the CN N = 0 - 1 absorption lines are typically 10 times stronger than those of CO J = 0 - 1. This is due to the higher electric dipole moment of the CN molecule, which enhances its absorption strength. In terms of molecular number density CO remains the more prevalent molecule with a ratio of CO/CN ∼10\sim 10, similar to that of nearby galaxies. Comparison of CO, CN and HI observations for these systems shows many different combinations of these absorption lines being detected

    The 2dF-SDSS LRG and QSO Survey: The Star Formation Histories of Luminous Red Galaxies

    Get PDF
    We present a detailed investigation into the recent star formation histories of 5,697 Luminous Red Galaxies (LRGs) based on the Hdelta (4101A) and [OII] (3727A) lines. LRGs are luminous (L>3L*), galaxies which have been selected to have photometric properties consistent with an old, passively evolving stellar population. For this study we utilise LRGs from the recently completed 2dF-SDSS LRG and QSO survey (2SLAQ). Equivalent widths of the Hdelta and [OII] lines are measured and used to define three spectral types, those with only strong Hdelta absorption (k+a), those with strong [OII] in emission (em) and those with both (em+a). All other LRGs are considered to have passive star formation histories. The vast majority of LRGs are found to be passive (~80 per cent), however significant numbers of k+a (2.7 per cent), em+a (1.2 per cent) and em LRGs (8.6 per cent) are identified. An investigation into the redshift dependence of the fractions is also performed. A sample of SDSS MAIN galaxies with colours and luminosities consistent with the 2SLAQ LRGs is selected to provide a low redshift comparison. While the em and em+a fractions are consistent with the low redshift SDSS sample, the fraction of k+a LRGs is found to increase significantly with redshift. This result is interpreted as an indication of an increasing amount of recent star formation activity in LRGs with redshift. By considering the expected life time of the k+a phase, the number of LRGs which will undergo a k+a phase can be estimated. A crude comparison of this estimate with the predictions from semi-analytic models of galaxy formation shows that the predicted level of k+a and em+a activity is not sufficient to reconcile the predicted mass growth for massive early-types in a hierarchical merging scenario.Comment: Accepted for publication in MNRAS, 13 pages, 10 figure
    • …
    corecore