13 research outputs found

    Development and characterization of phytosterol-enriched oil microcapsules for foodstuff application

    Get PDF
    Phytosterols are lipophilic compounds contained in plants and have several biological activities. The use of phytosterols in food fortification is hampered due to their high melting temperature, chalky taste, and low solubility in an aqueous system. Also, phytosterols are easily oxidized and are poorly absorbed by the human body. Formulation engineering coupled with microencapsulation could be used to overcome these problems. The aim of this study was to investigate the feasibility of encapsulating soybean oil enriched with phytosterols by spray-drying using ternary mixtures of health-promoting ingredients, whey protein isolate (WPI), inulin, and chitosan as carrier agents. The effect of different formulations and spray-drying conditions on the microencapsules properties, encapsulation efficiency, surface oil content, and oxidation stability were studied. It was found that spherical WPI-inulin-chitosan phytosterol-enriched soybean oil microcapsules with an average size below 50 μm could be produced with good encapsulation efficiency (85%), acceptable level of surface oil (11%), and water activity (0.2–0.4) that meet industrial requirements. However, the microcapsules showed very low oxidation stability with peroxide values reaching 101.7 meq O2/kg of oil just after production, and further investigations and optimization are required before any industrial application of this encapsulated system

    Nursing scholarship: role of faculty practice.

    No full text
    As nursing education has moved into the academic setting, nursing faculty have focused on the traditional components of scholarship in the faculty role: research and publication, teaching, and service. However, dramatic changes have occurred in higher education and health care forcing nursing faculty to reexamine their roles in both systems. A survey was conducted to explore the views held by deans and faculty of colleges of nursing on scholarship and to describe ways in which these views on scholarship reflect faculty practice. Principal findings of this study indicated that nursing deans and faculty view scholarship as the generation, dissemination, application, and advancement of nursing knowledge. The components of scholarship in the nursing faculty role were described as research and publication, teaching, service, faculty practice, and presentations. The strongest theme to emerge from the study was the role conflict and fragmentation experienced by faculty as they tried to balance all the components of scholarship. The topic of faculty practice was considered to be an important issue in nursing, with the majority of nursing faculty involved in faculty practice in environments where it is not accommodated, mandated, or formally expected. The findings of this study suggest that faculty practice roles could be considered a component of scholarship as long as scholarly outcomes are demonstrated

    A model of collaboration: the Academic Practice Council.

    No full text
    If the profession of nursing is to survive in the changing health care delivery system, new models of collaboration between nursing education and nursing practice must be developed. Nursing is both an academic discipline and a practice profession. The historic dissonance between education and practice has never served the profession of nursing; the pressing challenge is to blend one with the other now. In an effort to respond to the demands of the discipline and profession of nursing, an academic institution and a health care delivery system developed a model of interagency collaboration. This article addresses historical perspectives, and evolution, structure, activities, evaluation, and future plans to the Academic Practice Council

    Primary cilia are critical for Sonic hedgehog-mediated dopaminergic neurogenesis in the embryonic midbrain

    Get PDF
    AbstractMidbrain dopaminergic (mDA) neurons modulate various motor and cognitive functions, and their dysfunction or degeneration has been implicated in several psychiatric diseases. Both Sonic Hedgehog (Shh) and Wnt signaling pathways have been shown to be essential for normal development of mDA neurons. Primary cilia are critical for the development of a number of structures in the brain by serving as a hub for essential developmental signaling cascades, but their role in the generation of mDA neurons has not been examined. We analyzed mutant mouse lines deficient in the intraflagellar transport protein IFT88, which is critical for primary cilia function. Conditional inactivation of Ift88 in the midbrain after E9.0 results in progressive loss of primary cilia, a decreased size of the mDA progenitor domain, and a reduction in mDA neurons. We identified Shh signaling as the primary cause of these defects, since conditional inactivation of the Shh signaling pathway after E9.0, through genetic ablation of Gli2 and Gli3 in the midbrain, results in a phenotype basically identical to the one seen in Ift88 conditional mutants. Moreover, the expansion of the mDA progenitor domain observed when Shh signaling is constitutively activated does not occur in absence of Ift88. In contrast, clusters of Shh-responding progenitors are maintained in the ventral midbrain of the hypomorphic Ift88 mouse mutant, cobblestone. Despite the residual Shh signaling, the integrity of the mDA progenitor domain is severely disturbed, and consequently very few mDA neurons are generated in cobblestone mutants. Our results identify for the first time a crucial role of primary cilia in the induction of mDA progenitors, define a narrow time window in which Shh-mediated signaling is dependent upon normal primary cilia function for this purpose, and suggest that later Wnt signaling-dependent events act independently of primary cilia

    Delineating the neurological phenotype in children with defects in the ECHS1 or HIBCH gene

    No full text
    The neurological phenotype of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) and short-chain enoyl-CoA hydratase (SCEH) defects is expanding and natural history studies are necessary to improve clinical management. From 42 patients with Leigh syndrome studied by massive parallel sequencing, we identified five patients with SCEH and HIBCH deficiency. Fourteen additional patients were recruited through collaborations with other centres. In total, we analysed the neurological features and mutation spectrum in 19 new SCEH/HIBCH patients. For natural history studies and phenotype to genotype associations we also included 70 previously reported patients. The 19 newly identified cases presented with Leigh syndrome (SCEH, n = 11; HIBCH, n = 6) and paroxysmal dystonia (SCEH, n = 2). Basal ganglia lesions (18 patients) were associated with small cysts in the putamen/pallidum in half of the cases, a characteristic hallmark for diagnosis. Eighteen pathogenic variants were identified, 11 were novel. Among all 89 cases, we observed a longer survival in HIBCH compared to SCEH patients, and in HIBCH patients carrying homozygous mutations on the protein surface compared to those with variants inside/near the catalytic region. The SCEH p.(Ala173Val) change was associated with a milder form of paroxysmal dystonia triggered by increased energy demands. In a child harbouring SCEH p.(Ala173Val) and the novel p.(Leu123Phe) change, an 83.6% reduction of the protein was observed in fibroblasts. The SCEH and HIBCH defects in the catabolic valine pathway were a frequent cause of Leigh syndrome in our cohort. We identified phenotype and genotype associations that may help predict outcome and improve clinical management
    corecore