11 research outputs found

    Imaging of an active LANR quantum electronic component by CR-39

    Get PDF
    Abstract only.CR-39 has been used by gas and aqueous codeposition LANR systems. This effort examined the impact of ZrO2-PdNiD CF/LANR quantum electronic devices capable of significant energy gain upon CR-39. Chips were used at different distances, and one was placed directly over the NANOR during the irradiation sequence over several days. Examination of the processed CR-39 chips was done by sectioning each chip into 24 pixels, and a count was done by conventional optical microscopy with side imaging which separates out surface noise from deeper pits. There was a fall-off in pit count with increasing distance from the operating system. Most interestingly, the CR39 over the device essentially imaged the active CF/LANR device at very low resolution. The scalar counts of the largest and paired pits over the pixels, as we have done previously with positron emission tomography of tumors, reveal an "image" of the LANR/CF device elicited only after etching the CR-39 to derive the information "written" thereon. The conclusion is that LANR is a nuclear process, and for this system at this power level, the quantitative amount is measurable, can give a spatial image, and is biologically insignificant. In addition, integrating emission-sensitive elements can be used to image the active site of LANR systems

    A Randomized Comparison of the Endeavor Zotarolimus-Eluting Stent Versus the TAXUS Paclitaxel-Eluting Stent in De Novo Native Coronary Lesions 12-Month Outcomes From the ENDEAVOR IV Trial

    Get PDF
    ObjectivesThe ENDEAVOR IV (Randomized Comparison of Zotarolimus-Eluting and Paclitaxel-Eluting Stents in Patients with Coronary Artery Disease) trial evaluated the safety and efficacy of the zotarolimus-eluting stent (ZES) compared with the paclitaxel-eluting stent (PES).BackgroundFirst-generation drug-eluting stents have reduced angiographic and clinical restenosis, but long-term safety remains controversial. A second-generation drug-eluting stent, which delivers zotarolimus, a potent antiproliferative agent, via a biocompatible phosphorylcholine polymer on a cobalt alloy thin-strut stent has shown promising experimental and early clinical results.MethodsThis is a prospective, randomized (1:1), single-blind, controlled trial comparing outcomes of patients with single de novo coronary lesions treated with ZES or PES. The primary end point was noninferiority of 9-month target vessel failure defined as cardiac death, myocardial infarction, or target vessel revascularization.ResultsAmong a total of 1,548 patients assigned to ZES (n = 773) or PES (n = 775), at 9 months, ZES was noninferior to PES with rates of target vessel failure 6.6% versus 7.1%, respectively (pnoninferiority≤ 0.001). There were fewer periprocedural myocardial infarctions with ZES (0.5% vs. 2.2%; p = 0.007), whereas at 12 months, there were no significant differences between groups in rates of cardiac death, myocardial infarction, target vessel revascularization, or stent thrombosis. Although incidence of 8-month binary angiographic in-segment restenosis was higher in patients treated with ZES versus PES (15.3% vs. 10.4%; p = 0.284), rates of 12-month target lesion revascularization were similar (4.5% vs. 3.2%; p = 0.228), especially in patients without planned angiographic follow-up (3.6% vs. 3.2%; p = 0.756).ConclusionsThese findings demonstrate that ZES has similar clinical safety and efficacy compared with PES in simple and medium complexity single de novo coronary lesions. (ENDEAVOR IV Clinical Trial; NCT00217269

    Energy Gain From Preloaded ZrO2-PdNi-D Quantum Electronic Components - Energy Gain From Preloaded ZrO 2 -PdNi-D Nanostructured CF/LANR Quantum Electronic Components

    No full text
    Abstract -Previously, we reported that such nanocomposite ZrO 2 -PdNiD LANR materials have been made into LANR/CF transistors which exhibit energy gain and simultaneous non-thermal near infrared emission. This is accompanied by complicated polarization/transconduction phenomena including an avalanche transconduction electrical breakdown, which has a critical role in excess heat generation. This paper presents a new generation of preloaded LANR (CF) activated nanocomposite ZrO 2 -PdNiD CF/LANR quantum electronic devices capable of energy gain. These devices dry, glued into electrically conductive, sealed, configurations. The core is ZrO 2 -(PdNiD) with additional D 2 and H 2 . They are self-contained CF/LANR quantum electronic components containing ZrO 2 -PdNi-D LANR/CF nanostructured materials which generate significant excess heat from applied electric fields. They also feature two terminals and selfcontained superior handling properties enabling portability and transportability. Most importantly, the activation of the desired LANR reactions is, for the first time, separated from the loading of the substrate. Although their development has required control of their breakdown states and the quenching tendencies of nanostructured materials, these ZrO 2 -PdNiD CF/LANR quantum electronic devices are potentially very useful because they are reproducible active nanostructured CF/LANR quantum electronic devices

    Can Low-Cost, Handheld Spectroscopy Tools Coupled with Remote Sensing Accurately Estimate Soil Organic Carbon in Semi-Arid Grazing Lands?

    No full text
    Soil organic carbon influences several landscape ecological processes, and soils are becoming recognized as a mechanism to mitigate the negative impacts of climate change. There is a need to define methods and technologies for addressing soils’ spatial variability as well as the time and cost of sampling soil organic carbon (SOC). Visible and near-infrared spectroscopy have been suggested as a sampling tool to reduce inventory cost. We sampled nineteen ranch properties totaling 17,347 ha across Oklahoma and Texas in 2019 to evaluate the effectiveness and accuracy of a handheld reflectometer (Our Sci, Ann Arbor, MI, USA) (370–940 nm) and existing remote sensing approaches to estimate SOC in semi-arid grazing lands. Our data suggest that the Our Sci Reflectometer estimated soil organic carbon with a precision of approximately (±0.3% SOC); however, it was least accurate at higher carbon concentrations. The Our Sci reflectometer, although consistently accurate at lower SOC concentrations, was still less accurate than a model built using only remote sensing and digital soil map data as predictors. Combining the two data sources was the most accurate means of determining SOC. Our results indicated that the Our Sci handheld Vis-NIR reflectometer tested may have only limited applications for reducing inventory costs at scale
    corecore