256 research outputs found

    Unification of Gravity and Yang-Mills-Higgs Gauge Theories

    Full text link
    In this letter we show how the action functional of the standard model and of gravity can be derived from a specific Dirac operator. Far from being exotic this particular Dirac operator turns out to be structurally determined by the Yukawa coupling term. The main feature of our approach is that it naturally unifies the action of the standard model with gravity.Comment: 8 pages, late

    The generalized Lichnerowicz formula and analysis of Dirac operators

    Get PDF
    We study Dirac operators acting on sections of a Clifford module E{\cal E}\ over a Riemannian manifold MM. We prove the intrinsic decomposition formula for their square, which is the generalisation of the well-known formula due to Lichnerowicz [L]. This formula enables us to distinguish Dirac operators of simple type. For each Dirac operator of this natural class the local Atiyah-Singer index theorem holds. Furthermore, if MM\ is compact and {{\petit \rm dim}\;M=2n\ge 4}, we derive an expression for the Wodzicki function WEW_{\cal E}, which is defined via the non-commutative residue on the space of all Dirac operators D(E){\cal D}({\cal E}). We calculate this function for certain Dirac operators explicitly. From a physical point of view this provides a method to derive gravity, resp. combined gravity/Yang-Mills actions from the Dirac operators in question.Comment: 25 pages, plain te

    Z_2-Bi-Gradings, Majorana Modules and the Standard Model Action

    Full text link
    The action functional of the Standard Model of particle physics is intimately related to a specific class of first order differential operators called Dirac operators of Pauli type ("Pauli-Dirac operators"). The aim of this article is to carefully analyze the geometrical structure of this class of Dirac operators on the basis of real Dirac operators of simple type. On the basis of simple type Dirac operators, it is shown how the Standard Model action (STM action) may be viewed as generalizing the Einstein-Hilbert action in a similar way the Einstein-Hilbert action is generalized by a cosmological constant. Furthermore, we demonstrate how the geometrical scheme presented allows to naturally incorporate also Majorana mass terms within the Standard Model. For reasons of consistency these Majorana mass terms are shown to dynamically contribute to the Einstein-Hilbert action by a "true" cosmological constant. Due to its specific form, this cosmological constant can be very small. Nonetheless, this cosmological constant may provide a significant contribution to dark matter/energy. In the geometrical description presented this possibility arises from a subtle interplay between Dirac and Majorana masses

    Some remarks on the isoperimetric problem for the higher eigenvalues of the Robin and Wentzell Laplacians

    Full text link
    We consider the problem of minimising the kkth eigenvalue, k2k \geq 2, of the (pp-)Laplacian with Robin boundary conditions with respect to all domains in RN\mathbb{R}^N of given volume MM. When k=2k=2, we prove that the second eigenvalue of the pp-Laplacian is minimised by the domain consisting of the disjoint union of two balls of equal volume, and that this is the unique domain with this property. For p=2p=2 and k3k \geq 3, we prove that in many cases a minimiser cannot be independent of the value of the constant α\alpha in the boundary condition, or equivalently of the volume MM. We obtain similar results for the Laplacian with generalised Wentzell boundary conditions Δu+βuν+γu=0\Delta u + \beta \frac{\partial u}{\partial \nu} + \gamma u = 0.Comment: 16 page

    A remark on an overdetermined problem in Riemannian Geometry

    Full text link
    Let (M,g)(M,g) be a Riemannian manifold with a distinguished point OO and assume that the geodesic distance dd from OO is an isoparametric function. Let ΩM\Omega\subset M be a bounded domain, with OΩO \in \Omega, and consider the problem Δpu=1\Delta_p u = -1 in Ω\Omega with u=0u=0 on Ω\partial \Omega, where Δp\Delta_p is the pp-Laplacian of gg. We prove that if the normal derivative νu\partial_{\nu}u of uu along the boundary of Ω\Omega is a function of dd satisfying suitable conditions, then Ω\Omega must be a geodesic ball. In particular, our result applies to open balls of Rn\mathbb{R}^n equipped with a rotationally symmetric metric of the form g=dt2+ρ2(t)gSg=dt^2+\rho^2(t)\,g_S, where gSg_S is the standard metric of the sphere.Comment: 8 pages. This paper has been written for possible publication in a special volume dedicated to the conference "Geometric Properties for Parabolic and Elliptic PDE's. 4th Italian-Japanese Workshop", organized in Palinuro in May 201

    On the regularity up to the boundary for certain nonlinear elliptic systems

    Get PDF
    We consider a class of nonlinear elliptic systems and we prove regularity up to the boundary for second order derivatives. In the proof we trace carefully the dependence on the various parameters of the problem, in order to establish, in a further work, results for more general systems

    Monochromatization of femtosecond XUV light pulses with the use of reflection zone plates

    Get PDF
    We report on a newly built laser based tabletop setup which enables generation of femtosecond light pulses in the XUV range via employing the process of high order harmonic generation HHG in a gas medium. The spatial, spectral, and temporal characteristics of the XUV beam are presented. Monochromatization of XUV light with minimum temporal pulse distortion is the central issue of this work. Off center reflection zone plates are shown to be superior to gratings when selection of a desired harmonic is carried out with the use of a single optical element. A cross correlation technique was applied to characterize the performance of zone plates in the time domain. By using laser pulses of 25 fs length to pump the HHG process, a pulse duration of 45 fs for monochromatized harmonics was achieved in the present setu
    corecore