
A Conceptual Model for Semantic Web Spaces

Elena Paslaru Bontas, Lyndon J. B. Nixon, Robert Tolksdorf
paslaru, nixon, tolk@inf.fu-berlin.de

Freie Universiẗat Berlin
Institut für Informatik

AG Netzbasierte Informationssysteme
Takustr. 9, D-14195 Berlin Germany

1 Introduction

In a previous technical report [TNL+04] we have introduced an extension of XML-based
tuplespaces for the Semantic Web. By applying a tuplespace approach to the concur-
rent interaction of multiple clients with distributed knowledge repositories, we foresee the
benefits of a simple yet powerful co-ordination model in which parallel and distributed
processes can be uncoupled in space and time. The proposed system has been called Se-
mantic Web Spaces and is envisaged as acting as a middleware platform for real world
Semantic Web applications [TPBN05, TNPB+05b], in which it can handle in place of the
client the administration of distributed data, co-ordination of multiple processes and me-
diation between ontological representations. This technical report outlines a conceptual
model for Semantic Web Spaces. It provides answers to the questions that arise when
trying to combine the Linda/tuplespace paradigm with the Semantic Web and Semantic
Web compatible knowledge representations. Considering the sorts of extensions that can
be made to Linda-based systems, we identify those extensions which are required for an
integration with the Semantic Web. As a result, we can give a clearer overview of how
Semantic Web Spaces would be implemented and function. As a complementary activity,
we also provide in a separate technical report a concrete use case for applying Semantic
Web Spaces to realize ontology repositories [TNPB05a].

2 Overview of the conceptual model

Since its original conception as an extension to sequential programming languages to en-
able parallel programming, Linda [Gel85] has undergone a multitude of different exten-
sions in order to apply it in a wide range of scenarios which benefit from its simple yet
powerful co-ordination model (see Chapter 2 of [TNL+04] for a more detailed description
of Linda and Linda-based applications). In particular, recent work has drawn up require-
ments for its application in open distributed systems [JF04].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/199422498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Following the categorization drawn up in [RCD01], our proposed extensions for tuplespaces
can be divided in 4 categories:

• New types of tuples: the representation of Semantic Web knowledge within tu-
plespaces requires new types of tuples which are tailored to common Semantic Web
languages such as RDF(S) [HM04], OWL [PSHH04] or SWRL [HPSB+04].

• New co-ordination primitives: the transit from classical data-centered tuplespaces to
the new semantics-aware Semantic Web Spaces requires a revision of the meaning
of the core Linda primitives and the definition of further operations (see Section 4).

• New matchings: the standard Linda matching approach has to be extended in order
to efficiently manage the newly defined tuple types. Semantic matching techniques
taking into account ontological knowledge can be used to enrich the retrieval capa-
bilities of the tuplespace.

• Tuplespace ontology: the tuplespace ontology is used as a formal description of the
tuplespace, its components and properties. Using ontologies in this context allows
a more flexible and efficient management of the tuplespace content and of the inter-
action between tuplespace and information providers and consumers (extendability,
automatic inferencing etc.).

Figure 1 below shows an abstract architecture of Semantic Web Spaces. As all Linda-based
systems, the central components are the Linda co-ordination model and the tuplespace as
a shared data space for tuples.1 In Semantic Web Spaces we extend the core architectures
with a reasoning component for interpreting ontologies according to their formal semantics
(and drawing inferences, checking satisfiability etc) as this is out of the scope of the Linda
paradigm. Accordingly, the tuplespace is extended to support building a semantic view
upon the tuples (i.e. construction of a RDF graph model from RDF data stored in the
tuplespace) and association of RDF statements with the ontologies they reference.

Additionally, we extend the component handling the co-ordination of processes with mod-
ules to fulfil different administrative services that we consider as requisites in a Semantic
Web middleware [TNL+04, TNPB+05b]. We exemplify this issue by considering secu-
rity and trust components as extensions of the classical architecture. A set of metadata
(e.g. RDF statements) describes the tuplespace itself, according to an ontology we define
for describing a tuplespace and the tuples that it contains. This ontology provides con-
cepts for expressing security and trust policies, and hence allows for an ontology-based
approach to organizing and initializing these extension modules. Further on, the ontology
explicitly describes the structure of the space (e.g. whether sub-spaces are allowed) and
the supported matching templates.

Finally, as the system is foreseen as a middleware platform, it should be independent of
the underlying implementations of the different computer systems that the system must in-
teract with. This necessitates interfaces to isolate the system kernel from the heterogeneity
of both the clients which communicate with the system and the backend storage solutions

1The “kernel” of such a system could be distributed, the diagram does not purport to say anything about the
actual location of components.

which realize the physical storage of the information represented in the logical memory of
the tuplespace.

Co-ordination model

Tuple space

Admin. Services (e.g.
security & trust)

Tuple space metadata

Ontological reasoner,
matchmaker

RDF model of data,
ontologies

Sesame Instance
Store

In-memory
(e.g. Protégé)

Repository Interface

Knowledge
Data Stores

HTTP SOAP SMTP

Client Interface

Semantic Web
Clients

Figure 1: High-level architecture of Semantic Web Spaces

We now turn to a description of the tuplespace extensions in the aforementioned categories:
new types of tuples, new primitives, new matchings and tuplespace ontology.

3 New types of tuples

Following the Linda paradigm, Semantic Web Spaces should be able to representSemantic
Web informationthroughtuples. The expressivity of the information representation should
be aligned to the expressivity of common Semantic Web languages, while respecting their
semantics, so that tuples could be mapped to and from external Semantic Web resources.
As Semantic Web languages, we focus on RDF(S) [HM04] and OWL [PSHH04]. RDF
triples can be represented in a three field tuple of form<subject, predicate, object>. Each
tuple field contains, following the RDF abstract model, an URI (or, in the case of the
object, a literal). These URIs identify RDF resources. Each field is also typed accordingly,
URIs by RDF/OWL Classes and literals by datatypes. Finally, we choose to add an ID field

to the tuple. This allows each tuple to be globally identified. In this way tuples sharing the
same content i.e. the same subject, predicate and object can be addressed separately. The
allocation of the tuple IDs is coordinated by the tuplespace, while clients are permitted to
assign IDs within particular namespaces.2

Hence every RDF statement can be represented in a tuple and the type information carried
in each field. For example, a RDF tuple (using QNames instead of full URIs) stating that
a certain book has a certain ISBN number could look like this:

<my:novel [books:Book], books:has-isbn,
isbn:508-1762-443 [books:Isbn], my:bookisbn>

We also define a tuple field type “Bottom” which is represented in the syntax as underscore
“ ”. ’Bottom’ represents the empty set of things, the underclass of objects to which no
object belongs. It is reasonable to assume that such a thing exists following set theory
(the axiom of empty set). While not in RDF, the empty set is defined at the level of OWL
(owl:Nothing).

For templates, we define two further concepts. The first is that template (but not tuple)
fields may contain variables, represented in the syntax with a question mark, followed by
a type. Unlike traditional Linda, variables are not bound when tuples match to a template
hence they do not need to be named. The second is that templates may contain wildcards,
represented by an asterix. Wildcards represent the set of all things in the space, the class
of objects to which all objects belong. Again, a similar concept is provided not in RDF but
in OWL (owl:Thing).

There are however three special cases in the RDF model which we must also consider
in terms of deciding upon a suitable tuple-based representation: blank nodes, collec-
tions/containers and reification. We consider each in turn.

3.1 Blank nodes

Blank nodes are anonymous resources in a RDF graph, which have no externally address-
able label. However, blank nodes are assigned internal identifiers in order to allow other
local statements to reference and distinguish them. Due to the local character of blank
node identifiers, two RDF graphs which differ only at the blank node level are still con-
sidered equivalent. It is necessary to provide for the same semantics in Semantic Web
Spaces.

We define a field type ts:BlankNode which identifies the use of a blank node in a tuple.
The system itself will administer internal IDs for these blank nodes, ensuring that they
remain unique within the tuplespace or within the scope of the tuple. For a client plac-
ing a tuple with a blank node into the tuplespace, the identifier it allocates to the blank
node field is irrelevant, a local identifier is allocated to the field when the tuple is added

2In fact, since the tuplespace is described by means of an ontology, every tuple becomes an instance of the
ontology class ts:Tuple and is therefore automatically identified by the URI assigned to this instance.

to the tuplespace. Again, since every blank node is defined as an instance of the class
ts:BlankNode provided by the tuplespace ontology, the allocation of the corresponding ID
is realized in a similar manner as for every tuple contained in the tuplespace. However,
the IDs assigned to blank nodes are handled in a different way by the tuplespace itself in
order to ensure their locality. To add multiple tuples which refer to the same blank node,
it is necessary to claim all the tuples together in the form of a subspace, see Section 4.1.

Hence a RDF tuple with a blank node could look like this:

<my:person [foaf:Person], vcard:address, _:80bg42c
[ts:BlankNode], my:personsaddress>

3.2 Collections and containers

A collection is a closed set of objects. Containers are incomplete sets built according to
the open world assumption. Collections are specified in RDF by List, containers by Bag
(unordered), Seq (ordered) or Alt (only one member is considered ’true’ at any time). The
RDF Semantics does not impose any special conditions on the defined RDF vocabulary,
which permits some flexibility in the tuple representation but also means care must be
taken in what is permissable.

In traditional Linda implementations, the constructs of the host programming language
are used to define data structures in the tuples. In this case, we consider the use of array
constructs to model collections and containers in tuples. This has the advantage of permit-
ting them to be contained in a single tuple, independent of the collection/container size.
Constructs would be needed to differentiate between static and dynamic as well as ordered
and unordered arrays.

A List is then modeled in a static, ordered array. This replaces a set of rdf:first/rdf:last
statements. Rather, the client can retrieve the List as an array object and handle it locally
using host programming language constructs.

While not explicitly modeled as a tuple, the implicit property of membership between a
List and any resource could also be queried using the template

<x [rdf:List], rdfs:member, ? [rdf:Resource], *>

meaning return any resource which is a member of List x. This template would only
function in the information view of the space, and not in the data space. Given that List x
was asserted as a tuple field and that the same statement has not been explicitly asserted
in the data space, rdfs:member statements are only implicit in the space and can be made
explicit only if considering the semantics of the RDF language. The data view of each
tuplespace does not have any knowledge about the semantics of the data content, while
administrating tuples built according to a particular syntax (e.g. RDF statements in triple
form). Given the RDF syntax for Lists, we constrain Lists in the space to rdfs:member
properties (i.e. rdf:first, rdf:rest and rdf:nil are not understood). This is because the client
can iterate through a list locally, rather than have to do this through a cycle of templates

querying the space with rdf:first and rdf:rest, and because it avoids the semantic difficulties
which arise if a client could assert new values for rdf:first and rdf:rest in an existing List.

Containers are modeled in dynamic arrays, unordered in the case of Bag and ordered in
the case of Seq and Alt (In the latter case, it makes it possible to choose a resource on the
basis of its position in the container). Again, rather than a set of membership statements
the client includes the array in the tuple field typed by the appropriate container type.
Likewise, the container is retrieved from a tuple as an array and can be handled locally.
The implicit property of membership between a container and any resource could also be
queried using the template (where x represents an integer between 1 and x inclusive, and
x is the size of the container):

<x [rdfs:Container], rdf:_x, ? [rdf:Resource], *>

As tuplespaces do not permit tuple updates, a client which wishes to alter a collection or
container could destructively read the tuple with the array, locally alter the array and then
assert a new tuple. This helps the system maintain uniqueness of membership properties
i.e. that only one resource is the value of

rdf:_1, rdf:_2

and so on, and that for a container with x members their membership is asserted by the
properties

rdf:_1...rdf:_x

We could permit the above templates, as destructive reads, to effectively act to remove
a member from the array. The system would then re-organize membership properties
accordingly (if a member is removed, the membership property of the next members is
moved down one). Likewise, statements of membership properties could be asserted in
the information view of the space to act as member insertions. Again, the system would
re-organize membership properties accordingly (if a membership property is asserted a
second time, the value of it and all following members is shifted up one). In the RDF
semantics, it is permitted that any given membership property has more than one value, or
that a membership property has no value. We change this in order to allow clients more
certainty of acquiring the information they need, which in the RDF Semantics can not be
guaranteed.

As collections and containers are asserted as arrays in tuple fields rather than URIs they
are modeled in the RDF graph as blank nodes. In order to support global identification,
which is also necessary to construct templates which query resource membership through
the space rather than at the client level, it is possible to query at the tuple space ontology
level for the ID of the relevant field in the tuple.

3.3 Reification

To reify a statement means to be able to refer to it in another statement. In RDF, this
is achieved by creating an instance of rdf:Statement and giving values to its properties
rdf:subject, rdf:property and rdf:object. The URI of the rdf:Statement instance is then
used as subject or object in another statement.

The modeling of reification in the tuple space depends a great deal on our understanding of
its semantics, and in RDF it is widely recognized that this is underspecified. We consider
the reified triple (the rdf:Statement) not to be equivalent to any triple asserted in the space
by a RDF tuple, so that the (fourth field) tuple ID can not be considered to be a means of
reification. Rather, a reified triple represents a statement that is being talked about, and not
any statement that has been made. Likewise, we do not assume that any reified triple of
the form<s,p,o> is equivalent to any actual triple<s,p,o> even when s,p and o are URI
equivalent.

In Semantic Web Spaces, we follow standard RDF syntax for expressing a reified triple.
We refer to a rdf:Statement instance in a tuple, and give this instance values for the prop-
erties rdf:subject, rdf:property and rdf:object.

It is permissable to declare a Statement that is not fully instantiated, e.g. no rdf:object is
expressed.

As a shorthand, a client could form a RDFtuple and add it to a tuple field typed as
rdf:Statement. This tuple nesting avoids three additional tuples having to be asserted client
side (they are of course asserted implicitly in the information view). As a RDFtuple it also
contains an identifying URI within the fourth field. To model this in the tuplespace ontol-
ogy rdf:Statement would be a subclass of ts:Tuple.

For example, to state my belief that one of my friends is currently in Australia, the tuple
could look like this:

<my:person [foaf:Person], trust:believes, <my:friend3
[foaf:Person], loc:is-located-in, country:Australia
[country:Country], my:statementId> [rdf:Statement], my:claim>

4 New co-ordination primitives

The core Linda model consists of three primitives: out (tuple insert), rd (tuple retrieval,
non-destructive) and in (tuple retrieval, destructive). Another original primitive eval has
become less used in Linda implementations due to issues about its operational seman-
tics. Other implementations have added their own primitives, for example as rd/in are
blocking, non-blocking variants (rdp/inp) have been proposed. Another issue, the multi-
ple read problem – Linda does not guarantee unique answers to the same template so that
rd(template) could return the same single tuple repeatedly – is handled by the proposed
collect and copy-collect primitives.

As aforementioned, in Semantic Web Spaces we make a fundamental distinction between

a data view and an information view upon stored tuples. In the data view all tuples, despite
their RDF-based typing, are seen as plain data, without semantics. Under this perspective
the tuplespace works as a traditional Linda system. RDF tuples are not assigned any
special meaning. In the information view we see the set of RDF tuples in the tuplespace
as a RDF graph. This means that a RDF tuple must be consistent with the RDF semantics
and satisfiable according to its RDF schema.

Hence, we can make two distinctions which both need a new set of Linda primitives, as
each distinction determines a new semantic for the traditional Linda operations of out,
rd and in. The first distinction is between non-RDF tuples and RDF tuples. A simple
data tuple could also contain three fields with URIs as such tuples are unconstrained in
terms of field number of field content. RDF tuples however have a special structure and
components, which have to be handled according to the usage of RDF in the Semantic
Web. So besides the traditional data tuple operations

out: tuple -> boolean.
rd: template -> tuple.
in: template -> tuple.

we redefine the primitives for RDF tuples, adding the constraint that the tuple or template
that is used must conform to a RDF tuple or template (i.e. 3 or 4 fields, containing RDF
resources or – as object – literals)

outr: (s,p,o) -> boolean.
rdr: (s,p,o,id) -> tuple.
inr: (s,p,o,id) -> tuple.

As mentioned above, the IDs are assigned internally by the system and are retrieved using
special matching templates.

These operations are still data view, i.e. a RDF tuple conforming to RDF syntax is ac-
cepted, no check is made against ontological (e.g. RDF Schema) information. They serve
to allow well formed RDF statements to be placed in the tuple space, and be retrieved
destructively or non-destructively. As data view operations, templates act, in the sense
of Linda, only on the syntactic level of the tuple, i.e. they can match on the basis of
URI syntax matching or literal datatype matching. However, no ontological information
is considered. This provides a less resource-intensive means to acquire RDF tuples, e.g.
retrieval by ID, or by (exact) URI match, while a matching taking into account semantic
information usually implies a considerable amount of computational resources required
for performing particular inferencing operations.

However, for the information view, we want that the RDF statements are also satisfiable—
according to a constraining schema—and retrievable based on ontological information.
Information view assertion acts as a test of the consistency of the knowledge asserted in Se-
mantic Web Spaces. RDF statements refer to a RDFS or OWL ontology, which describes
the vocabulary and the meaning of these ontological constructs. For this reason RDF tu-
ples which do not conform to the corresponding schema will be automatically rejected

by the tuplespace. Note that we assume RDFS statements about the classes instantiated
within the RDF tuple are available. If not, we reject the RDF tuple at the information view
level as it can not be checked for consistency. The tuple could still be asserted as the data
view level, and maybe asserted again later when RDF Schema information is available.

4.1 Claim

To assert tuples in the information view, we propose the primitive

claim: (s,p,o,id) -> boolean.
claim: (Subspace) -> boolean.

A claim can contain either a single RDFTuple (i.e. an instance of the class ts:RDFTuple,
see below) or it can contain a Subspace, which is defined at the client side and contains
one or more tuples. As well as allowing multiple tuples to be claimed in one operation,
it provides the means to make claims which contain blank nodes. Within a Subspace, a
blank node with the same identifier will be considered as being the same blank node when
tuples are added into the space.

A claim carries a truth value, i.e. it is making a statement about something that it purports
to be true. An accepted claim exists as a RDF tuple or set of RDF tuples equally in the
data view, however its ’truthfulness’ is only a property of the tuple at the information view
level. If the claim can not be substantiated, then the tuple or subspace is rejected and false
is returned to the client. Note that in the case of a subspace, the entire subspace must be
satisfiable, or it will be rejected.

4.2 Endorse and excerpt

To read tuples from the information view, we propose the primitive

endorse: (s,p,o,id) -> Subspace.

A tuple matching the given template is considered ’endorsed’ by the information view, i.e.
that it has been found to be consistent with current ontological information. The match is
returned as a subspace (see the tuplespace ontology: it is a tuplespace instance which is
the object of the property ’hasSubSpace’). This subspace may contain a single matching
tuple, however in the case of blank nodes the linking tuples are included in the response.
This means for example that if the matching tuple has a blank node as its subject, then the
set of tuples with the blank node as their object will be also included in the response.

We also choose to support a solution for multiple read operations (i.e. get all matching
tuples for a template). We propose the primitive

excerpt: (s,p,o) -> Context.

This primitive is a version of the copy-collect primitive [RW98] that acts on the informa-
tion view. It works within contexts (which are introduced next): a context is created by the
system into which all matching tuples are copied [TPBN05]. A reference to this context
is passed to the client who is given alone the right to access the context. The client can
then make destructive reads in that context i.e. retract(*,*,*,*) to remove all of the tuples.
When the context is empty the system destroys the context.

Note that endorse and excerpt can match tuples which are not in the data view but exist
’implicitly’ in the information view (i.e. as inferrable tuples).

4.3 Retract

Finally, tuples may be removed from the information view. Yet this operation is question-
able, as it is not the same as expressing negation (which is not supported in Semantic Web
Spaces). Rather, we are removing a statement from the set without denying its truthfulness.
As a result, we propose the primitive

retract: (s,p,o,id) -> Subspace.

which, if a matching tuple is found, replaces its subject, predicate and object in the infor-
mation view with ’Bottom’ rather than removing it completely. The tuple remains in the
data view. Hence its reference continues to exist but the assertion that the reference makes
is lost. As a result, all inferrable tuples from that retracted tuple must also be lost. Note
that this operates the same as endorse, in that a subspace is returned and blank nodes will
cause additional tuples to be retracted.

4.4 General issues

The information view primitives are, as with all Linda operations, blocking in order to
support the co-ordination model of Linda. However, we do not consider this binding in an
implementation of Semantic Web Spaces. There may be cases in which it is preferable to
have non-blocking uses (where if a match is not found a null object is returned) or blocking
with timeout.

We must also answer the issue of synchronization between data and information views.
Fundamentally, the information view is a RDF schema-consistent view of a RDF graph
built from RDF tuples in the data view. A claim made in the information view will also be
added as a RDF tuple in the data view. However, a retraction in the information view does
not affect the data view. Conversely, the assertion of a RDF tuple in the data view does not
affect the information view—it is not considered as a knowledge claim.

The destructive reading of a RDF tuple in the data view does however alter the information
view. The associated claim is retracted as a result, with the related consequences. Hence,
in any application of Semantic Web Spaces, care must be taken in terms of which clients

could destructively read which tuples.

There are two additional modeling issues that should be handled by Semantic Web Spaces.
One is changes in the data and information view affect not only the tuple itself but also
all tuples that are connected to it (e.g. exist in the sub-tree of the RDF graph for which
that tuple is the root) or inferrable from it. Hence a single destructive read can have much
larger consequences for the RDF graph in the Semantic Web Space. Similarly, changes
in the ontologies being used to determine the satisfiability of RDF graphs may also cause
tuples to be retracted. We do not consider these issues further in Semantic Web Spaces, but
acknowledge that clients should be aware of the destructiveness of single operations and
that in cases restrictions may be advisable on client operations to avoid such destructive
operations.

We also choose to use the concept of contexts. Both clients and tuples are associated
to a set of contexts, and an agent can only see the tuples which exist in a same context.
The concept is based on scopes [MW00], which allow for a tuplespace to be split into
(overlapping) partitions. This provides a means to control client access to statements in
the space and to split client operations into subsets of relevant statements. In order to
support contexts in the Semantic Web Space we require at least two operations: a means
for a client to construct a context, and a means to acquire a context from a matched tuple.
Other context operations are handled by the system e.g. if a client upon joining a space is
allocated a certain context set.

At this stage in the conceptual model we do not define contexts further, but leave this as
further work to be done.

The previous Linda operations must also be extended to support operations within a given
context. The syntax used is operation(parameter)@context or contextset where context
is a single context ID or contextset is an array datatype containing a list of context IDs,
including nested arrays for context joins.

An operation asserting a tuple in the space which carries a context associates that context
to the inserted tuple. An operation retrieving a tuple is executed in the system only over
the tuples which are in the associated context.

5 New matchings

5.1 Syntactic and semantic matching

Traditional Linda matching is based on checking the equality of number of fields, equality
of field constants and binding of field variables. Whether a matching occurs is therefore
dependant upon matching rules for different types. Determining equality between two
constants is type dependant as is determining if a constant in a tuple can be bound to the
variable in the template. Initially simple datatypes were used as field types, and match-
ings were based on the equality checks of the programming language of the underlying
Linda implementation. This is not necessarily as simple as stating that the types must be

equivalent and that constant values are the same, e.g. the integer 5 and the real value 5.0
are equivalent, even though the type and constant value are actually different. For some
types, different matching algorithms are possible, e.g. whether or not the lower/upper case
of characters are ignored in string matching.

RDF can be handled both as a special datatype with a particular syntax (following the ab-
stract syntax model) and as a knowledge representation form which encapsulates meaning
about something (following the RDF model-theoretic semantics). Semantic Web Spaces
support both analyzes of RDF data, through matching either in the data view or the infor-
mation view.

Hence in Semantic Web Spaces we support three different levels of matching on the RDF
tuples, which corresponds to the three sets of co-ordination primitives that are supported.
The traditional Linda primitives (in, rd) match on RDF tuple contents disregarding RDF
syntax entirely, i.e. RDF URIs are matched as if they were XML Schema anyURIs (and
literals, of course, according to their own type). That is to say, URI equality is based
on pure string matching and RDF URIs will type-match with any other string or anyURI
typed URIs. While this will generally not be sufficient, it provides a least-computationally
intensive approach to retrieving a RDF tuple. Special RDF syntactic constructs, in this
matching, are disregarded: blank nodes, reifications or containers/collections are simply
not understood at this level and can only match on a wildcard.

The other levels of matching, i.e. adding RDF specific syntactic matching (inr, rdr) and
adding RDF Schema based semantic matching (endorse, excerpt, retract), are increasingly
computationally demanding but of course provide the added power of the RDF data model
and semantics to the clients of Semantic Web Spaces.

5.2 Matching RDF abstract syntax

The RDF syntactic matching considers only tuples identified in the space as RDF tuples.
Every RDF tuple is constrained to the form<s,p,o,id>, whose 4 fields represent a RDF
statement (subject, predicate, object) plus a tuple specific identifier. The RDF statement
contains URI values typed as RDF resources (the object can also be a literal, i.e. a XML
Schema datatype). The ID is also an URI which is a RDF ID. RDF resources are matched
on the basis of URI string equivalence (as in the traditional matching) and RDF type equiv-
alence (using URI string equivalence of the URIs used to identify the RDF type). In ac-
cordance to the RDF model, matching on RDF statements considers only the first three
fields of the RDF tuple. The fourth field is used as an identifier for the RDF statement
(s,p,o) and is therefore handled separately in semantic matching operations. A match on
the ID field occurs only if both URIs are exactly the same. The complete match functions
like a Boolean AND operation, i.e. the RDF matching on the first three fields AND the
ID matching on the fourth fields must both return true. Generally, in a RDF matching
the template will use the wildcard for the fourth field. Hence, in the case of the proposed
Linda primitives for the RDF syntactic matching (inr, rdr) if the fourth field is not stated,
it is automatically interpreted as the wildcard.

However in this case RDF has a number of special syntactic constructs which need to be
handled specifically in matching RDFTuples. These constructs were already discussed in
Chapter 3, where we considered their representation within the tuplespace. Here we dis-
cuss them again but in the context of respecting the RDF syntax when performing syntactic
matching.

Blank nodes are identified by the internal type ts:BlankNode. It makes no sense to try to
match Blank node instances as instances have no externally valid identifier - the identifier
returned when a Blank node is bound to a variable is system determined and unique only to
the given matching. However Blank nodes will match on variables of type ts:BlankNode
or of course wildcards.

Matches on reified triples, containers or collections only occur where the field variable type
in the template will match the RDF class Statement, List, Bag, Seq or Alt, respectively.
In the case of constants, collections and containers are treated as array datatypes in which
the unordered Alt or Bag matches any other Alt or Bag containingexactlythe same set of
objects while the ordered List and Seq matches only with the same set of objectsin the
same order. Each individual object is matched according to its own type.

Matching RDF Statements is like an additional tuple matching, following the same rules
as the matching of the containing tuple. Subject, predicate, object and ID must all match.

While this matching provides a retrieval mechanism which takes into account RDF types
and the special syntactic constructs of blank nodes, containers, collections and reification,
the semantics of the RDF is still not taken into account. If the full power of RDF is to
be available, we need to also allow matching at the information view of the Space, which
makes use of ontological information associated to the RDF statements in form of RDFS
or OWL ontologies.

5.3 Matching RDF Semantics

In the RDF model-theoretic semantics, RDF resources are no longer considered as in-
stances of a datatype, but at a higher, knowledge representation level they are interpreted
as concepts which have some agreed-upon meaning. It is out of scope of this report to go
into details on the theoretic semantics of RDF or to further discuss its relationship to the
RDFS and OWL semantics.3

Matching of RDFTuples in the information view shall support the interpretation of tuple
content according to the defined RDF semantics. These matchings may choose to support
interpretations at different levels of expressibility, in order to provide a compromise with
computational complexity (the more expressive the interpretation we attempt to match, the
more computationally complex it will be). It is clear that such matching can only occur if
the RDF Schema (or OWL) information is available, otherwise it is not possible to draw the
necessary inferences and the matching will take place according to the syntactic matching
of the inr/rdr primitives.

3An entire discussion of RDF Semantics is at http://www.w3.org/TR/rdf-mt/

As an example of a core matching algorithm for the information view of Semantic Web
Spaces we consider a standard, and generally fundamental, semantic interpretation: that of
subsumption. Subsumption functions on the basis of subClass and subProperty statements
in the RDF Schema. Formally these statements are equivalent to the respective Description
Logics syntax:

C1 subClassOf C2 :C1 v C2
P1 subPropertyOf P2 :P1 v P2

We also note that these properties are transitive, i.e. if C1 subClassOf C2 and C2 subClas-
sOf C3 then C1 subClassOf C3. In such a matching, we extend matching on RDF types
to consider if a type T1, in the template, is subsumable by a type T2, in a tuple. Subsump-
tion checking can be handled by any Description Logic reasoner. Hence for any T1 in a
template, it is considered a match with any T2 in a tuple iffT1 v T2. 4

This also affects the matching on RDF constructs. Blank nodes now also match on vari-
ables typed as RDF resources (as we define ts:BlankNode as a subclass of rdf:Resource in
the tuplespace ontology) and RDF statements will match on variables typed as RDF tuples
(as we define rdf:Statement as a subclass of ts:RDFTuple in the tuplespace ontology).

This matching should also be further extendable, e.g. to support OWL based inferences
provided OWL information is available and an OWL reasoner.

5.4 Template syntax

We now turn to the description of the template language in Semantic Web Spaces.

We consider a template language for constructing queries on the tuple space. A normal
template, as in Linda, models the equivalence of a “simple query” in RDF query languages.
For example (we use here a abbreviated syntax), a RDF query like

SELECT ?x WHERE (book, title, ?x)

is equally expressible as

endorse(book, title, ?x)

Note that RDF queries typically return variable bindings (where all variables in the query
must not be bound in the response) while in the Semantic Web Space a Subspace with a
matched Tuple (or set of Tuples) is returned (where no variable in the template is bound).

Rather than extend this simple template syntax to support more complex RDF queries,
we consider that this simple template form retrieves a subset of a matching RDF graph

4One could also imagine further variations of this basic form of semantic matching, in which for example
only direct ancestor or descendant types T2 are considered to match T1, in contrast to the case in which the
complete transitive closure implied by the subClassOf relationship matches the given type T1.

(or many subsets, in the case of excerpt) which can then be further processed by the client
using a dedicated RDF reasoner and its respective RDF query syntax. This is more efficient
than attempting to perform complex RDF querying over the Semantic Web Space on the
side of the space.

6 Tuplespace ontology

The structure of Semantic Web Spaces is represented explicitly by means of a so-called tu-
plespace ontology. The ontology describes the typical components of the tuplespace, such
as sub-spaces, supported tuple types and matching templates, and coordinates the informa-
tion access. The ontology provides an explicit means to model access rights, trust policies
and active contexts of clients (here named agents) of the space. The internal representation
of access rights and trust policies is currently undefined. It can easily be extended with new
types of tuplespaces, rules describing new primitives and further metadata about spaces,
and allows the usage of automatic reasoning in the management of tuples and accessing
agents. The ontological model of the tuplespace references the concrete spaces and triples
published by different parties, which are syntactically RDF documents and (sets of) RDF
statements, respectively. Representing the entire tuplespace as an ontology model offers
a means to reference tuples and tuplespaces which can be identified and addressed using
URIs – by definition assigned to named Semantic Web resources.

A part of the tuplespace ontology is shown below in Figure 2.

TupleSpace

Tuple

Field Type

hasSubSpace

hasSubTuple

hasTuple

appliesToAgent

hasType

rdf:resource XMLDocument
Primitive
Datatype

Access
Policy

Agent

Template

hasPredefinedTemplate

…

hasContext

definesPolicy
Trust
Policy

is-a is-a

is-a

Context

hasField

hasContext

Figure 2: Ontology for a Semantic Web Space

Some examples will illustrate, in terms of RDF/RDFTuples, how particular knowledge
can be expressed through the tuplespace ontology and subsequently extracted by a process

using the Semantic Web Space.

6.1 Giving an ID to a tuple

In the Semantic Web Space, RDF tuples have been defined as being of the form<s, p, o,
id>. However in the traditional RDF model, RDF statements are triples, i.e. they are of
the form<subject, predicate, object>. A design decision of Semantic Web Spaces was
to provide the tuples with IDs so that each could be uniquely identified. We have already
noted that this is not the same as the reification of RDF statements. Hence, the question
arises of how we model the tuple IDs in the space. The solution is that we define Tuples as
first class objects within the tuplespace ontology, which means that they can be given an
RDF ID. Every RDF tuple which is inserted into the space (whether by outr or by claim)
generates a ts:RDFTuple instance (any tuple inserted by the standard out operation is a
ts:Tuple instance, of which RDFTuple is a subclass). The space allocates internally IDs to
every new Tuple instance, e.g.

<ts:RDFTuple
rdf:about="http://nbi.inf.fu-berlin.de/sws/rdf/00823745">

.....
</ts:RDFTuple>

The ID URIs are recommended to follow W3C guidelines, i.e. to be built from an unique
URI which is maintained by the Semantic Web Space host (e.g. a space hosted by the Com-
puter Science department of the Free University of Berlin could take the URI sws.inf.fu-
berlin.de). Such URIs should also be persistent over time, even if the tuple contents are
not.

6.2 Getting the ID of a tuple field or field value

Tuples are also related to their tuple fields within the tuplespace ontology so that a knowl-
edge base built from the ontology can represent the entire space, including all of its con-
tained tuples. A standard Tuple has the property hasField, which points to a field instance
containing the field value which is typed by the field type. RDFTuples have the subprop-
erties hasSubject, hasPredicate and hasObject. There are cases where retrieving the field
ID may prove useful, e.g. to reference a blank node (which has no identifier of its own,
but in the tuplespace exists as the subject or object of a particular tuple) or the field value
ID, e.g. referencing a RDF container/collection (which is represented by an array in the
tuplespace).

In the first case, the tuplespace knowledge base could contain a RDFTuple like this:

<ts:RDFTuple rdf:about="http://nbi.inf.fu-berlin.de/sws/
rdf/00453625">

<ts:hasSubject>
<ts:Field rdf:about="http://nbi.inf.fu-berlin.de/sws/

rdf/00453625/1">
<ts:hasValue>

<book:Author
rdf:about="http://www.robert-tolksdorf.de"/>

</ts:hasValue>
</ts:Field>

</ts:hasSubject>
<ts:hasPredicate>

<ts:Field rdf:about="http://nbi.inf.fu-berlin.de/sws/
rdf/00453625/2">

<ts:hasValue>
<rdf:Property

rdf:about="http://www.books.com/ont#has-authored"/>
</ts:hasValue>

</ts:Field>
<ts:hasPredicate>
<ts:hasObject>

<ts:Field rdf:about="http://nbi.inf.fu-berlin.de/sws/
rdf/00453625/3">

<ts:hasValue>
<ts:BlankNode rdf:ID="75ge342" />

</ts:hasValue>
</ts:Field>

</ts:hasObject>
</ts:RDFTuple>

Note that the object of the RDFTuple is typed as a Blank node and the ID given is purely
internal, i.e. it is not available to any agent retrieving this tuple. A possible approach to
enabling a reference to a blank node (or, better said, a field containing a blank node) which
is valid for the entire tuplespace would be to retrieve the ID of the field whose value is of
type ts:BlankNode.

In the second case, the tuplespace knowledge base could contain a RDFTuple like this (the
predicate is omitted for brevity):

<ts:RDFTuple rdf:about="http://nbi.inf.fu-berlin.de/sws/
rdf/00823745">

<ts:hasSubject>
<ts:Field rdf:about="http://nbi.inf.fu-berlin.de/sws/

rdf/00823745/1">
<ts:hasValue>

<book:Author
rdf:about="http://www.robert-tolksdorf.de"/>

</ts:hasValue>
</ts:Field>

</ts:hasSubject>
...
<ts:hasObject>

<ts:Field rdf:about="http://nbi.inf.fu-berlin.de/sws/
rdf/00823745/3">

<ts:hasValue>
<rdf:List rdf:about="http://nbi.inf.fu-berlin.de/sws/

rdf/00823745/3/list">
...

</rdf:List>
</ts:hasValue>

</ts:Field>
</ts:hasObject>

</ts:RDFTuple>

The object of this RDFTuple is a RDF List, which is stored at the tuple level (as opposed
to the tuplespace level) in the form of an array of integers. If this tuple is retrieved by an
agent, the object of the tuple is passed as a single array, however the object is typed in the
tuple as a RDF List and this is made explicit in the tuplespace ontology. At the tuple level
then the List has no referencable URI, rather, one could use the below templates to acquire
the ID (where x is the instance of ts:Field returned from the first operation):

endorse("http://nbi.inf.fu-berlin.de/sws/rdf/00823745"
[ts:RDFTuple], ts:hasObject, ? [ts:Field]),

endorse(x [ts:Field],ts:hasValue, ? [rdf:List]).

On this basis, further operations could be performed on the List (though we recommend
retrieving the array object and performing operations client side if possible). For example,
membership can be checked in the information view, on the basis that a field value which
is typed as a RDF List (or as a container) generates implicit (or inferrable) tuples that
associate each member of the RDF container/collection to the field instance through the
relevant membership property.

endorse("http://nbi.inf.fu-berlin.de/sws/rdf/
00823745/3/list"[rdf:List], rdfs:member, ?)

6.3 Checking the scopes of a tuple and adding them to an agent

The conceptual model also proposes that tuples and agents alike exist within certain con-
texts, otherwise known as scopes. These act to partition the tuples existence in or the
agents view upon the tuplespace, respectively. One requirement that arises with the use
of scopes is the need for agents to be able to check which scopes a tuple exists in, e.g.
that once a tuple has been retrieved because it exists in one of the agents scopes, that the
agent could check which other scopes the tuple also exists within and attempt to join those
scopes. The tuplespace ontology provides a hasScope property upon tuples and agents
which takes Scope instances as values. The scopes are identified by URIs as RDF IDs
within the tuplespace ontology. Hence, once an agent has the ID of a Tuple it could use
the following primitives to retrieve scopes and add them to its scope. The latter opera-
tion could return false, when rules also exist within the tuplespace which constrain which
scopes an agent could belong to. Hence the semantics of the claim primitive are main-

tained (returning false when a claim is unsatisfiable) but this presupposes a higher level of
reasoning than currently proposed for the RDFSpace.

excerpt("http://nbi.inf.fu-berlin.de/sws/rdf/00823745"
[ts:RDFTuple], ts:hasScope, ? [ts:Scope]),

then for each Scope instance x,

claim("http://nbi.inf.fu-berlin.de/agent/114"[ts:Agent],
ts:hasScope, x[ts:Scope])

6.4 Comparing access policies of a tuplespace and an agent

Finally, the tuplespace ontology also allows for the maintenance of policies relating to
security and trust issues. These policies are generally associated to a tuplespace and to
individual agents, and are used to determine whether a given agent can be trusted (i.e.
that claims made in the space are trustworthy) or if certain actions of an agent are to be
permitted (i.e. that the agent has access to that functionality in the space). In the latter
case, it may be that certain agents may only access the data view of the space, or only non-
destructively read tuples, or are restricted to a certain set of scopes which they may not
change. How these policies may actually be represented is not defined in the conceptual
model, it may be that they point by URL to a separate file using a specific syntax, or that the
policies are themselves represented within RDF syntax (although they may be represented
in a higher level logic, e.g. OWL or Rules. Approaches using Semantic Web languages
to represent this kind of policies are already available in the literature). For this example
we restrict ourselves to handling the policies as instances of the classes ts:AccessPolicy
or ts:TrustPolicy, without making any further determinations on how those instances may
relate further to the actual policies (as URLs, inline RDF etc.). Given the identification
and possible authentication of the agent, a policy controller seeks to compare the access
policy of the space with that of the agent:

endorse("http://sws.inf.fu-berlin.de"[ts:TupleSpace],
ts:definesPolicy, ? [ts:AccessPolicy]),
endorse(? [ts:AccessPolicy],ts:appliesToAgent,
"http://nbi.inf.fu-berlin.de/agent/114"[ts:Agent])

7 Conclusions and Future Work

This technical report has outlined the conceptual model of Semantic Web Spaces in suffi-
cient detail for a concrete implementation.

We have examined how Linda and tuplespaces can be used as a middleware technology
for the Semantic Web, allowing us to benefit from their main properties: powerful co-
ordination capabilities, asynchronous messaging and uncoupling of processes from space

and time. We have also shown that to make this integration, certain changes in the tuple
structure, co-ordination model and matching rules need to be made. We outlined what we
foresee these changes to be. We also presented an ontology which is able to represent the
tuplespace in an explicit, formal way, thus allowing reasoning over the management of
tuples or clients. The proposed tuplespace architecture, based too on the interpretation of
a defining ontology, is inherently extendible, so that support for further requirements of a
real world Semantic Web middleware can be built in.

In a complementary technical report [TNPB05a], we will outline an use case for Semantic
Web Spaces and illustrate the conceptual model described in this document through some
concrete examples.

References

[Gel85] David Gelernter. Generative Communication in Linda.ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, 1985.

[HM04] Patrick Hayes and Brian McBride. RDF Semantics. Available at
http://www.w3.org/TR/rdf-mt/, 2004.

[HPSB+04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof,
and Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. Available at http://www.w3.org/Submission/SWRL/, 2004.

[JF04] B. Johanson and A. Fox. Extending Tuplespaces for Coordination in Interactive
Workspaces.Journal of Systems and Software, 69(3):243–266, 2004.

[MW00] Iain Merrick and Alan Wood. Coordination with Scopes. In Janice Carroll, Ernesto
Damiani, Hisham Haddad, and Dave Oppenheim, editors,Proceedings of the 2000
ACM Symposium on Applied Computing (SAC 2000), pages 210–217, Como (I), 19–
21 March 2000. ACM. Track on Coordination Models, Languages and Applications.

[PSHH04] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web Ontology
Language Semantics and Abstract Syntax.Available at http://www.w3.org/TR/owl-
absyn/, 2004.

[RCD01] Davide Rossi, Giacomo Cabri, and Enrico Denti. Tuple-based Technologies for Co-
ordination. In Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert
Tolksdorf, editors,Coordination of Internet Agents: Models, Technologies, and Ap-
plications, chapter 4, pages 83–109. Springer Verlag, 2001. ISBN 3540416137.

[RW98] A. I. T. Rowstron and A. M. Wood. Solving the Linda multiple rd problem using the
copy-collect primitive.Sci. Comput. Program., 31(2-3):335–358, 1998.

[TNL+04] R. Tolksdorf, L. Nixon, F. Liebsch, N. Duc Minh, and E. Paslaru Bontas. Semantic
Web Spaces (Technical Report TR-B-04-11). Technical report, Free University of
Berlin, 2004.

[TNPB05a] R. Tolksdorf, L. Nixon, and E. Paslaru Bontas. Using Semantic Web Spaces to re-
alize Ontology Repositories (Technical Report TR-B-05-15). Technical report, Free
University of Berlin, 2005.

[TNPB+05b] R. Tolksdorf, L. Nixon, E. Paslaru Bontas, D. M. Nguyen, and F. Liebsch. Enabling
real world Semantic Web applications through a coordination middleware. InPro-
ceedings of the 2nd European Conference on Semantic Web ESWC2005. Springer
Verlag, 2005.

[TPBN05] R. Tolksdorf, E. Paslaru Bontas, and L. Nixon. Towards a tuplespace-based middle-
ware for the Semantic Web. InProceedings of the IEEE Web Intelligence Conference
WI2005, 2005.

