research

Some remarks on the isoperimetric problem for the higher eigenvalues of the Robin and Wentzell Laplacians

Abstract

We consider the problem of minimising the kkth eigenvalue, k2k \geq 2, of the (pp-)Laplacian with Robin boundary conditions with respect to all domains in RN\mathbb{R}^N of given volume MM. When k=2k=2, we prove that the second eigenvalue of the pp-Laplacian is minimised by the domain consisting of the disjoint union of two balls of equal volume, and that this is the unique domain with this property. For p=2p=2 and k3k \geq 3, we prove that in many cases a minimiser cannot be independent of the value of the constant α\alpha in the boundary condition, or equivalently of the volume MM. We obtain similar results for the Laplacian with generalised Wentzell boundary conditions Δu+βuν+γu=0\Delta u + \beta \frac{\partial u}{\partial \nu} + \gamma u = 0.Comment: 16 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019