60 research outputs found

    Multi-Unit Activity contains information about spatial stimulus structure in mouse primary visual cortex

    No full text

    Commensurability effects in Andreev antidot billiards

    Full text link
    An Andreev billiard was realized in an array of niobium filled antidots in a high-mobility InAs/AlGaSb heterostructure. Below the critical temperature T_C of the Nb dots we observe a strong reduction of the resistance around B=0 and a suppression of the commensurability peaks, which are usually found in antidot lattices. Both effects can be explained in a classical Kubo approach by considering the trajectories of charge carriers in the semiconductor, when Andreev reflection at the semiconductor-superconductor interface is included. For perfect Andreev reflection, we expect a complete suppression of the commensurability features, even though motion at finite B is chaotic.Comment: 4 pages, 4 figure

    Effect of the partial replacement of CaH2 with CaF2 in the Mixed System CaH2 + MgB2

    Get PDF
    In this work the effect of a partial replacement of CaH2 with CaF2 on the sorption properties of the system CaH2 + MgB2 has been studied. The first five hydrogen absorption and four desorption reactions of the CaH2 + MgB2 and 3CaH2 + CaF2 + 4MgB2 systems were investigated by means of volumetric measurements, high-pressure differential scanning calorimetric technique (HP-DSC), 11B and 19F MAS NMR spectroscopy, and in situ synchrotron radiation powder X-ray diffraction (SR-PXD). It was observed that already during the mixing of the reactants formation of a nonstoichiometric CaF2-xHx solid solution takes place. Formation of the CaF2-xHx solid solution sensibly affects the overall hydrogen sorption reactions of the system CaH2 + MgB2

    Effect of Fe additive on the hydrogenation-dehydrogenation properties of 2LiH + MgB2/2LiBH4 + MgH2 system

    Get PDF
    Lithium reactive hydride composite 2LiBH4 + MgH2 (Li-RHC) has been lately investigated owing to its potential as hydrogen storage medium for mobile applications. However, the main problem associated with this material is its sluggish kinetic behavior. Thus, aiming to improve the kinetic properties, in the present work the effect of the addition of Fe to Li-RHC is investigated. The addition of Fe lowers the starting decomposition temperature of Li-RHC about 30 °C and leads to a considerably faster isothermal dehydrogenation rate during the first hydrogen sorption cycle. Upon hydrogenation, MgH2 and LiBH4 are formed whereas Fe appears not to take part in any reaction. Upon the first dehydrogenation, the formation of nanocrystalline, well distributed FeB reduces the overall hydrogen storage capacity of the system. Throughout cycling, the agglomeration of FeB particles causes a kinetic deterioration. An analysis of the hydrogen kinetic mechanism during cycling shows that the hydrogenation and dehydrogenation behavior is influenced by the activity of FeB as heterogeneous nucleation center for MgB2 and its non-homogenous distribution in the Li-RHC matrix.Fil: Puszkiel, Julián Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Gennari, Fabiana Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro Atómico Bariloche; ArgentinaFil: Arneodo Larochette, Pierre Paul. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro Atómico Bariloche; ArgentinaFil: Ramallo Lopez, Jose Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Vainio, U.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh; . Deutsches Elektronen-Synchrotron; AlemaniaFil: Karimi, F.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Pranzas, P. K.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Troiani, Horacio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro Atómico Bariloche; ArgentinaFil: Pistidda, C.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Jepsen, J.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Tolkiehn, M.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Welter, E.. Deutsches Elektronen-Synchrotron; AlemaniaFil: Klassen, T.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Bellosta Von Colbe, J.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh;Fil: Dornheim, M.. Helmholtz-zentrum Geesthacht - Zentrum Für Material- Und Küstenforschung Gmbh

    Fall Classification by Machine Learning Using Mobile Phones

    Get PDF
    Fall prevention is a critical component of health care; falls are a common source of injury in the elderly and are associated with significant levels of mortality and morbidity. Automatically detecting falls can allow rapid response to potential emergencies; in addition, knowing the cause or manner of a fall can be beneficial for prevention studies or a more tailored emergency response. The purpose of this study is to demonstrate techniques to not only reliably detect a fall but also to automatically classify the type. We asked 15 subjects to simulate four different types of falls–left and right lateral, forward trips, and backward slips–while wearing mobile phones and previously validated, dedicated accelerometers. Nine subjects also wore the devices for ten days, to provide data for comparison with the simulated falls. We applied five machine learning classifiers to a large time-series feature set to detect falls. Support vector machines and regularized logistic regression were able to identify a fall with 98% accuracy and classify the type of fall with 99% accuracy. This work demonstrates how current machine learning approaches can simplify data collection for prevention in fall-related research as well as improve rapid response to potential injuries due to falls

    X-ray absorption anisotropy for polychromatic illumination - Crystal views from inside

    No full text
    We review an atomic resolution imaging method based on the analysis of the fine structure in X-ray absorption anisotropy, which results from incident beam diffraction. For a polychromatic X-ray beam, due to the suppression of higher order diffraction fringes, X-ray absorption anisotropy patterns can be interpreted as distorted real-space projections of the atomic structure around absorbing atoms. A qualitative method for analysis of X-ray absorption anisotropy patterns is presented, based on modeling of X-ray patterns with ray-traced images calculated for clusters around absorbing atoms
    • …
    corecore