2,034 research outputs found

    t-Exponential Memory Networks for Question-Answering Machines

    Full text link
    Recent advances in deep learning have brought to the fore models that can make multiple computational steps in the service of completing a task; these are capable of describ- ing long-term dependencies in sequential data. Novel recurrent attention models over possibly large external memory modules constitute the core mechanisms that enable these capabilities. Our work addresses learning subtler and more complex underlying temporal dynamics in language modeling tasks that deal with sparse sequential data. To this end, we improve upon these recent advances, by adopting concepts from the field of Bayesian statistics, namely variational inference. Our proposed approach consists in treating the network parameters as latent variables with a prior distribution imposed over them. Our statistical assumptions go beyond the standard practice of postulating Gaussian priors. Indeed, to allow for handling outliers, which are prevalent in long observed sequences of multivariate data, multivariate t-exponential distributions are imposed. On this basis, we proceed to infer corresponding posteriors; these can be used for inference and prediction at test time, in a way that accounts for the uncertainty in the available sparse training data. Specifically, to allow for our approach to best exploit the merits of the t-exponential family, our method considers a new t-divergence measure, which generalizes the concept of the Kullback-Leibler divergence. We perform an extensive experimental evaluation of our approach, using challenging language modeling benchmarks, and illustrate its superiority over existing state-of-the-art techniques

    Asymmetric Feature Maps with Application to Sketch Based Retrieval

    Full text link
    We propose a novel concept of asymmetric feature maps (AFM), which allows to evaluate multiple kernels between a query and database entries without increasing the memory requirements. To demonstrate the advantages of the AFM method, we derive a short vector image representation that, due to asymmetric feature maps, supports efficient scale and translation invariant sketch-based image retrieval. Unlike most of the short-code based retrieval systems, the proposed method provides the query localization in the retrieved image. The efficiency of the search is boosted by approximating a 2D translation search via trigonometric polynomial of scores by 1D projections. The projections are a special case of AFM. An order of magnitude speed-up is achieved compared to traditional trigonometric polynomials. The results are boosted by an image-based average query expansion, exceeding significantly the state of the art on standard benchmarks.Comment: CVPR 201

    Particular object retrieval with integral max-pooling of CNN activations

    Get PDF
    Recently, image representation built upon Convolutional Neural Network (CNN) has been shown to provide effective descriptors for image search, outperforming pre-CNN features as short-vector representations. Yet such models are not compatible with geometry-aware re-ranking methods and still outperformed, on some particular object retrieval benchmarks, by traditional image search systems relying on precise descriptor matching, geometric re-ranking, or query expansion. This work revisits both retrieval stages, namely initial search and re-ranking, by employing the same primitive information derived from the CNN. We build compact feature vectors that encode several image regions without the need to feed multiple inputs to the network. Furthermore, we extend integral images to handle max-pooling on convolutional layer activations, allowing us to efficiently localize matching objects. The resulting bounding box is finally used for image re-ranking. As a result, this paper significantly improves existing CNN-based recognition pipeline: We report for the first time results competing with traditional methods on the challenging Oxford5k and Paris6k datasets

    Orientation covariant aggregation of local descriptors with embeddings

    Get PDF
    Image search systems based on local descriptors typically achieve orientation invariance by aligning the patches on their dominant orientations. Albeit successful, this choice introduces too much invariance because it does not guarantee that the patches are rotated consistently. This paper introduces an aggregation strategy of local descriptors that achieves this covariance property by jointly encoding the angle in the aggregation stage in a continuous manner. It is combined with an efficient monomial embedding to provide a codebook-free method to aggregate local descriptors into a single vector representation. Our strategy is also compatible and employed with several popular encoding methods, in particular bag-of-words, VLAD and the Fisher vector. Our geometric-aware aggregation strategy is effective for image search, as shown by experiments performed on standard benchmarks for image and particular object retrieval, namely Holidays and Oxford buildings.Comment: European Conference on Computer Vision (2014
    corecore