56 research outputs found

    Doxycycline-Doped Polymeric Membranes Induced Growth, Differentiation and Expression of Antigenic Phenotype Markers of Osteoblasts

    Get PDF
    This research was funded by (1) the Ministry of Economy and Competitiveness and European Regional Development Fund [Project MAT2017-85999-P MINECO/AEI/FEDER/UE], (2) University of Granada/Regional Government of Andalusia Research Fund from Spain and European Regional Development Fund (A-BIO-157-UGR-18/FEDER). This research is part of Manuel Toledano-Osorio’s PhD research study.Polymeric membranes are employed in guided bone regeneration (GBR) as physical barriers to facilitate bone in-growth. A bioactive and biomimetic membrane with the ability to participate in the healing and regeneration of the bone is necessary. The aim of the present study was to analyze how novel silicon dioxide composite membranes functionalized with zinc or doxycycline can modulate the osteoblasts' proliferation, differentiation, and expression of selected antigenic markers related to immunomodulation. Nanostructured acrylate-based membranes were developed, blended with silica, and functionalized with zinc or doxycycline. They were subjected to MG63 osteoblast-like cells culturing. Proliferation was assessed by MTT-assay, differentiation by evaluating the alkaline phosphatase activity by a spectrophotometric method and antigenic phenotype was assessed by flow cytometry for selected markers. Mean comparisons were conducted by one-way ANOVA and Tukey tests (p < 0.05). The blending of silica nanoparticles in the tested non-resorbable polymeric scaffold improved the proliferation and differentiation of osteoblasts, but doxycycline doped scaffolds attained the best results. Osteoblasts cultured on doxycycline functionalized membranes presented higher expression of CD54, CD80, CD86, and HLA-DR, indicating a beneficial immunomodulation activity. Doxycycline doped membranes may be a potential candidate for use in GBR procedures in several challenging pathologies, including periodontal disease.European Commission MAT2017-85999-P A-BIO-157-UGR-18/FEDERMinistry of Economy and Competitiveness MAT2017-85999-PUniversity of Granada/Regional Government of Andalusia Research Fund from Spain A-BIO-157-UGR-18/FEDE

    Dexamethasone and doxycycline functionalized nanoparticles enhance osteogenic properties of titanium surfaces

    Get PDF
    Objectives: To evaluate the effect of doxycycline and dexamethasone doped nanoparticles covering titanium surfaces, on osteoblasts proliferation and differentiation. Methods: Doxycycline and dexamethasone doped polymeric nanoparticles were applied on titanium discs (Ti- DoxNPs and Ti-DexNPs). Undoped NPs and uncovered Ti discs were used as control. Human MG-63 osteoblast- like cells were cultured. Osteoblasts proliferation was tested by MTT assay. Alkaline phosphatase activity was analyzed. Differentiation gene expression was assessed by real-time quantitative polymerase chain reaction. Scanning Electron Microscopy was performed to assess osteoblasts morphology. Mean comparisons were con- ducted by ANOVA and Wilcoxon or Tukey tests (p < 0.05). Results: No differences in osteoblasts proliferation were found. Osteoblasts grown on Ti-DoxNPs significantly increased alkaline phosphatase activity. Doxycycline and dexamethasone nanoparticles produced an over-ex- pression of the main osteogenic proliferative genes (TGF-β1, TGF-βR1 and TGF-βR2). The expression of Runx-2 was up-regulated. The osteogenic proteins (AP, OSX and OPG) were also overexpressed on osteoblasts cultured on Ti-DoxNPs and Ti-DexNPs. The OPG/RANKL ratio was the highest when DoxNPs were present (75-fold in- crease with respect to the control group). DexNPs also produced a significantly higher OPG/RANKL ratio with respect to the control (20 times higher). Osteoblasts grown on titanium discs were mainly flat and polygonal in shape, with inter-cellular connections. In contrast, osteoblasts cultured on Ti-DoxNPs or Ti-DexNPs were found to be spindle-shaped and had abundant secretions on their surfaces. Significance: DoxNPs and DexNPs were able to stimulate osteoblasts differentiation when applied on titanium surfaces, being considered potential inducers of osteogenic environment when performing regenerative proce- dures around titanium dental implants.Grant PID2020–114694RB-I00 funded by MCIN/AEI 10.13039/501100011033FPU of Ministry of Universities grant FPU20/0045Klockner S.A. for financial support and for providing the titanium disc

    Expression profiling of chromatin-modifying enzymes and global DNA methylation in CD4+ T cells from patients with chronic HIV infection at different HIV control and progression states

    Get PDF
    Abstract Background Integration of human immunodeficiency virus type 1 (HIV-1) into the host genome causes global disruption of the chromatin environment. The abundance level of various chromatin-modifying enzymes produces these alterations and affects both the provirus and cellular gene expression. Here, we investigated potential changes in enzyme expression and global DNA methylation in chronically infected individuals with HIV-1 and compared these changes with non-HIV infected individuals. We also evaluated the effect of viral replication and degree of disease progression over these changes. Results Individuals with HIV-1 had a significant surge in the expression of DNA and histone methyltransferases (DNMT3A and DNMT3B, SETDB1, SUV39H1) compared with non-infected individuals, with the exception of PRMT6, which was downregulated. Some histone deacetylases (HDAC2 and HDAC3) were also upregulated in patients with HIV. Among individuals with HIV-1 with various degrees of progression and HIV control, the group of treated patients with undetectable viremia showed greater differences with the other two groups (untreated HIV-1 controllers and non-controllers). These latter two groups exhibited a similar behavior between them. Of interest, the overexpression of genes that associate with viral protein Tat (such as SETDB1 along with DNMT3A and HDAC1, and SIRT-1) was more prevalent in treated patients. We also observed elevated levels of global DNA methylation in individuals with HIV-1 in an inverse correlation with the CD4/CD8 ratio. Conclusions The current study shows an increase in chromatin-modifying enzymes and remodelers and in global DNA methylation in patients with chronic HIV-1 infection, modulated by various levels of viral control and progression

    Long-Range Wireless Mesh Network for Weather Monitoring in Unfriendly Geographic Conditions

    Get PDF
    In this paper a long-range wireless mesh network system is presented. It consists of three main parts: Remote Terminal Units (RTUs), Base Terminal Units (BTUs) and a Central Server (CS). The RTUs share a wireless network transmitting in the industrial, scientific and medical applications ISM band, which reaches up to 64 Km in a single point-to-point communication. A BTU controls the traffic within the network and has as its main task interconnecting it to a Ku-band satellite link using an embedded microcontroller-based gateway. Collected data is stored in a CS and presented to the final user in a numerical and a graphical form in a web portal

    A system dynamics model to predict the human monocyte response to endotoxins

    Full text link
    System dynamics is a powerful tool that allows modeling of complex and highly networked systems such as those found in the human immune system. We have developed a model that reproduces how the exposure of human monocytes to lipopolysaccharides (LPSs) induces an inflammatory state characterized by high production of tumor necrosis factor alpha (TNFα), which is rapidly modulated to enter into a tolerant state, known as endotoxin tolerance (ET). The model contains two subsystems with a total of six states, seven flows, two auxiliary variables, and 14 parameters that interact through six differential and nine algebraic equations. The parameters were estimated and optimized to obtain a model that fits the experimental data obtained from human monocytes treated with various LPS doses. In contrast to publications on other animal models, stimulation of human monocytes with super-low-dose LPSs did not alter the response to a second LPSs challenge, neither inducing ET, nor enhancing the inflammatory response. Moreover, the model confirms the low production of TNFα and increased levels of C-C motif ligand 2 when monocytes exhibit a tolerant state similar to that of patients with sepsis. At present, the model can help us better understand the ET response and might offer new insights on sepsis diagnostics and prognosis by examining the monocyte response to endotoxins in patients with sepsisThis work was supported by grants from the “Instituto de Salud Carlos III” (ISCiii), “Fondo de Investigación Sanitaria” (FIS), and Fondos FEDER (PI14/01234, PIE15/00065) to EL-C. EA work contract is supported by the Torres Quevedo program from “Ministerio de Economía y Competitividad” (SPTQ1300X006175XV0). VT work contract is supported by the “Ministerio de Economía y Competitividad” (PTA2013-8265-I

    Inflammatory cytokines and organ dysfunction associate with the aberrant DNA methylome of monocytes in sepsis

    Get PDF
    Background: Sepsis, a life-threatening organ dysfunction caused by a dysregulated systemic immune response to infection, associates with reduced responsiveness to subsequent infections. How such tolerance is acquired is not well understood but is known to involve epigenetic and transcriptional dysregulation. Methods: Bead arrays were used to compare global DNA methylation changes in patients with sepsis, noninfectious systemic inflammatory response syndrome, and healthy controls. Bioinformatic analyses were performed to dissect functional reprogramming and signaling pathways related to the acquisition of these specific DNA methylation alterations. Finally, in vitro experiments using human monocytes were performed to test the induction of similar DNA methylation reprogramming. Results: Here, we focused on DNA methylation changes associated with sepsis, given their potential role in stabilizing altered phenotypes. Tolerized monocytes from patients with sepsis display changes in their DNA methylomes with respect to those from healthy controls, affecting critical monocyte-related genes. DNA methylation profiles correlate with IL-10 and IL-6 levels, significantly increased in monocytes in sepsis, as well as with the Sequential Organ Failure Assessment score; the observed changes associate with TFs and pathways downstream to toll-like receptors and inflammatory cytokines. In fact, in vitro stimulation of toll-like receptors in monocytes results in similar gains and losses of methylation together with the acquisition of tolerance. Conclusion: We have identified a DNA methylation signature associated with sepsis that is downstream to the response of monocytes to inflammatory signals associated with the acquisition of a tolerized phenotype and organic dysfunction

    Inflammatory cytokines and organ dysfunction associate with the aberrant DNA methylome of monocytes in sepsis

    Get PDF
    Sepsis, a life-threatening organ dysfunction caused by a dysregulated systemic immune response to infection, associates with reduced responsiveness to subsequent infections. How such tolerance is acquired is not well understood but is known to involve epigenetic and transcriptional dysregulation. Bead arrays were used to compare global DNA methylation changes in patients with sepsis, non-infectious systemic inflammatory response syndrome, and healthy controls. Bioinformatic analyses were performed to dissect functional reprogramming and signaling pathways related to the acquisition of these specific DNA methylation alterations. Finally, in vitro experiments using human monocytes were performed to test the induction of similar DNA methylation reprogramming. Here, we focused on DNA methylation changes associated with sepsis, given their potential role in stabilizing altered phenotypes. Tolerized monocytes from patients with sepsis display changes in their DNA methylomes with respect to those from healthy controls, affecting critical monocyte-related genes. DNA methylation profiles correlate with IL-10 and IL-6 levels, significantly increased in monocytes in sepsis, as well as with the Sequential Organ Failure Assessment score; the observed changes associate with TFs and pathways downstream to toll-like receptors and inflammatory cytokines. In fact, in vitro stimulation of toll-like receptors in monocytes results in similar gains and losses of methylation together with the acquisition of tolerance. We have identified a DNA methylation signature associated with sepsis that is downstream to the response of monocytes to inflammatory signals associated with the acquisition of a tolerized phenotype and organic dysfunction

    Oxygen Saturation on Admission Is a Predictive Biomarker for PD-L1 Expression on Circulating Monocytes and Impaired Immune Response in Patients With Sepsis

    Get PDF
    Sepsis is a pathology in which patients suffer from a proinflammatory response and a dysregulated immune response, including T cell exhaustion. A number of therapeutic strategies to treat human sepsis, which are different from antimicrobial and fluid resuscitation treatments, have failed in clinical trials, and solid biomarkers for sepsis are still lacking. Herein, we classified 85 patients with sepsis into two groups according to their blood oxygen saturation (SaO2): group I (SaO2 ≤ 92%, n = 42) and group II (SaO2 &gt; 92%, n = 43). Blood samples were taken before any treatment, and the immune response after ex vivo LPS challenge was analyzed, as well as basal expression of PD-L1 on monocytes and levels of sPD-L1 in sera. The patients were followed up for 1 month. Taking into account reinfection and exitus frequency, a significantly poorer evolution was observed in patients from group I. The analysis of HLA-DR expression on monocytes, T cell proliferation and cytokine profile after ex vivo LPS stimulation confirmed an impaired immune response in group I. In addition, these patients showed both, high levels of PD-L1 on monocytes and sPD-L1 in serum, resulting in a down-regulation of the adaptive response. A blocking assay using an anti-PD-1 antibody reverted the impaired response. Our data indicated that SaO2 levels on admission have emerged as a potential signature for immune status, including PD-L1 expression. An anti-PD-1 therapy could restore the T cell response in hypoxemic sepsis patients with SaO2 ≤ 92% and high PD-L1 levels

    Beneficial effect of systemic allogeneic adipose derived mesenchymal cells on the clinical, inflammatory and immunologic status of a patient with recessive dystrophic epidermolysis bullosa: A case report

    Get PDF
    Recessive dystrophic epidermolysis bullosa (RDEB) is an incurable inherited mucocutaneous fragility disorder characterized by recurrent blisters, erosions, and wounds. Continuous blistering triggers overlapping cycles of never-ending healing and scarring commonly evolving to chronic systemic inflammation and fibrosis. The systemic treatment with allogeneic mesenchymal cells (MSC) from bone marrow has previously shown benefits in RDEB. MSC from adipose tissue (ADMSC) are easier to isolate. This is the first report on the use of systemic allogeneic ADMSC, correlating the clinical, inflammatory, and immunologic outcomes in RDEB indicating long-lasting benefits. We present the case of an RDEB patient harboring heterozygous biallelic COL7A1 gene mutations and with a diminished expression of C7. The patient presented with long-lasting refractory and painful oral ulcers distressing her quality of life. Histamine receptor antagonists, opioid analgesics, proton-pump inhibitors, and low-dose tricyclic antidepressants barely improved gastric symptoms, pain, and pruritus. Concomitantly, allogeneic ADMSC were provided as three separate intravenous injections of 106 cells/kg every 21 days. ADMSC treatment was well-tolerated. Improvements in wound healing, itch, pain and quality of life were observed, maximally at 6-9 months post-treatment, with the relief of symptoms still noticeable for up to 2 years. Remarkably, significant modifications in PBL participating in both the innate and adaptive responses, alongside regulation of levels of profibrotic factors, MCP-1/CCL2 and TGF-beta, correlated with the health improvement. This treatment might represent an alternative for non-responding patients to conventional management. It seems critical to elucidate the paracrine modulation of the immune system by MSC for their rational use in regenerative/immunoregulatory therapies.This study was supported by a donation from Berritxuak-Elkartea (2015/00397/002), a collaborative rare disease association and, from La Paz University Hospital as well as by grants from the Community of Madrid (AvanCell-CM S2017/BMD-3692) and the Spanish Ministry of Economy and Competitiveness (SAF2017-86810-R). The UCMteamis supported by grants from the Spanish Institute of Health Carlos III (RD16/0011/0002) and the Spanish Ministry of Economy and Competitiveness (RTI2018-093899-B-I00). MJE is recipient of a contract funded by DEBRA-Spain

    Healthcare workers hospitalized due to COVID-19 have no higher risk of death than general population. Data from the Spanish SEMI-COVID-19 Registry

    Get PDF
    Aim To determine whether healthcare workers (HCW) hospitalized in Spain due to COVID-19 have a worse prognosis than non-healthcare workers (NHCW). Methods Observational cohort study based on the SEMI-COVID-19 Registry, a nationwide registry that collects sociodemographic, clinical, laboratory, and treatment data on patients hospitalised with COVID-19 in Spain. Patients aged 20-65 years were selected. A multivariate logistic regression model was performed to identify factors associated with mortality. Results As of 22 May 2020, 4393 patients were included, of whom 419 (9.5%) were HCW. Median (interquartile range) age of HCW was 52 (15) years and 62.4% were women. Prevalence of comorbidities and severe radiological findings upon admission were less frequent in HCW. There were no difference in need of respiratory support and admission to intensive care unit, but occurrence of sepsis and in-hospital mortality was lower in HCW (1.7% vs. 3.9%; p = 0.024 and 0.7% vs. 4.8%; p<0.001 respectively). Age, male sex and comorbidity, were independently associated with higher in-hospital mortality and healthcare working with lower mortality (OR 0.211, 95%CI 0.067-0.667, p = 0.008). 30-days survival was higher in HCW (0.968 vs. 0.851 p<0.001). Conclusions Hospitalized COVID-19 HCW had fewer comorbidities and a better prognosis than NHCW. Our results suggest that professional exposure to COVID-19 in HCW does not carry more clinical severity nor mortality
    corecore