101 research outputs found
Energy transitions, sub-national government and regime flexibility : how has devolution in the United Kingdom affected renewable energy development?
We acknowledge the support of the Economic and Social Research Council for funding the research on which this paper was based (Grant Number RES-062-23-2526).Peer reviewedPostprin
Rescaling the Governance of Renewable Energy : Lessons from the UK Devolution Experience
An earlier version of this paper was presented at the symposium ‘Scale in environmental governance: power reconfiguration, democratic legitimacy and institutional (mis-)fit’, Berlin-Brandenburg Academy of Sciences and Humanities, Berlin 7-8 March 2013. We would like to thank the symposium participants, special issue editors and three anonymous referees for their comments and advice.Peer reviewe
Sub-national government and pathways to sustainable energy.
In an effort to understand how to promote more sustainable forms of energy provision, researchers have begun addressing the scale of political and governance processes, yet the effects of sub-national government remain neglected. At the same time, analysts of political devolution, decentralisation and independence have rarely given attention to the energy sector. Papers in this special issue seek to better understand the relationship between sub-national government and pathways to sustainable energy: examining how city-regional and devolved governments have shaped agendas for building retrofit; elucidating the importance of decentralised governance in knitting together electricity, heat and transport energy markets; mapping the complex, fuzzy spatial organisation of legal powers to direct energy policy across multi-level polities; and analysing conflicts over the allocation of energy infrastructure consenting powers between national and devolved governments. The papers highlight the interdependencies of action in different governmental arenas, and reinforce arguments for greater central-to-local reflexivity in governance styles. Analysing the interface between sub-national government and energy transition also raises new questions about the meaning of 'sovereignty', the fragmentary nature of democratic control over energy systems, and the effects of boundaries
Rescaling the governance of renewable energy: lessons from the UK devolution experience.
Efforts to rescale governance arrangements to foster sustainable development are rarely simple in their consequences, an out-turn examined in this paper through an analysis of how the governance of renewable energy in the UK has been impacted by the devolution of power to Northern Ireland, Scotland and Wales. Theoretically, attention is given to the ways in which multiple modes of governing renewable energy, and the interactions between modes and objects of governance, together configure the scalar organization of renewable energy governance. Our findings show how the devolved governments have created new, sub-national renewable energy strategies and targets, yet their effectiveness largely depends on UK-wide systems of subsidy. Moreover, shared support for particular objects of governance-large-scale, commercial electricity generation facilities-has driven all the devolved government to centralize and expedite the issuing of consents. This leads to a wider conclusion. While the level at which environmental problems are addressed can affect how they are governed, what key actors believe about the objects of governance can mediate the effects of any rescaling processes
Isolation and Characterization of the Saccharomyces cerevisiae DPP1 Gene Encoding Diacylglycerol Pyrophosphate Phosphatase
Diacylglycerol pyrophosphate (DGPP) is involved in a putative novel lipid signaling pathway. DGPP phosphatase (DGPP phosphohydrolase) is a membrane-associated 34-kDa enzyme fromSaccharomyces cerevisiae which catalyzes the dephosphorylation of DGPP to yield phosphatidate (PA) and then catalyzes the dephosphorylation of PA to yield diacylglycerol. Amino acid sequence information derived from DGPP phosphatase was used to identify and isolate the DPP1(diacylglycerol pyrophosphatephosphatase) gene encoding the enzyme. Multicopy plasmids containing the DPP1 gene directed a 10-fold overexpression of DGPP phosphatase activity in S. cerevisiae. The heterologous expression of the S. cerevisiae DPP1 gene in Sf-9 insect cells resulted in a 500-fold overexpression of DGPP phosphatase activity over that expressed in wild-type S. cerevisiae. DGPP phosphatase possesses a Mg2+-independent PA phosphatase activity, and its expression correlated with the overexpression of DGPP phosphatase activity in S. cerevisiae and in insect cells. DGPP phosphatase was predicted to be an integral membrane protein with six transmembrane-spanning domains. The enzyme contains a novel phosphatase sequence motif found in a superfamily of phosphatases. Adpp1Δ mutant was constructed by deletion of the chromosomal copy of the DPP1 gene. The dpp1Δ mutant was viable and did not exhibit any obvious growth defects. The mutant was devoid of DGPP phosphatase activity and accumulated (4-fold) DGPP. Analysis of the mutant showed that the DPP1 gene was not responsible for all of the Mg2+-independent PA phosphatase activity in S. cerevisiae
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
A circumpolar study unveils a positive non-linear effect oftemperature on arctic arthropod availability that may reduce therisk of warming-induced trophic mismatch for breeding shorebirds
Seasonally abundant arthropods are a crucial food source for many migratorybirds that breed in the Arctic. In cold environments, the growth and emergence ofarthropods are particularly tied to temperature. Thus, the phenology of arthropodsis anticipated to undergo a rapid change in response to a warming climate, potentiallyleading to a trophic mismatch between migratory insectivorous birds and their prey.Using data from 19 sites spanning a wide temperature gradient from the Subarcticto the High Arctic, we investigated the effects of temperature on the phenology andbiomass of arthropods available to shorebirds during their short breeding seasonat high latitudes. We hypothesized that prolonged exposure to warmer summertemperatures would generate earlier peaks in arthropod biomass, as well as higherpeak and seasonal biomass. Across the temperature gradient encompassed by ourstudy sites (>10°C in average summer temperatures), we found a 3-day shift inaverage peak date for every increment of 80 cumulative thawing degree-days.Interestingly, we found a linear relationship between temperature and arthropodbiomass only below temperature thresholds. Higher temperatures were associatedwith higher peak and seasonal biomass below 106 and 177 cumulative thawingdegree-days, respectively, between June 5 and July 15. Beyond these thresholds,no relationship was observed between temperature and arthropod biomass. Ourresults suggest that prolonged exposure to elevated temperatures can positivelyinfluence prey availability for some arctic birds. This positive effect could, in part,stem from changes in arthropod assemblages and may reduce the risk of trophicmismatch. Sarctic arthropods, arctic breeding shorebirds, climate warming, insectivorous birds,invertebrate biomass, phenology, trophic mismatcpublishedVersio
Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network
A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities
Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network
A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities
- …