284 research outputs found

    Past warming trend constrains future warming in CMIP6 models

    Get PDF
    Future global warming estimates have been similar across past assessments, but several climate models of the latest Sixth Coupled Model Intercomparison Project (CMIP6) simulate much stronger warming, apparently inconsistent with past assessments. Here, we show that projected future warming is correlated with the simulated warming trend during recent decades across CMIP5 and CMIP6 models, enabling us to constrain future warming based on consistency with the observed warming. These findings carry important policy-relevant implications: The observationally constrained CMIP6 median warming in high emissions and ambitious mitigation scenarios is over 16 and 14% lower by 2050 compared to the raw CMIP6 median, respectively, and over 14 and 8% lower by 2090, relative to 1995–2014. Observationally constrained CMIP6 warming is consistent with previous assessments based on CMIP5 models, and in an ambitious mitigation scenario, the likely range is consistent with reaching the Paris Agreement target

    Specific detection of Salmonella enterica and Escherichia coli strains by using ELISA with bacteriophages as recognition agents

    Get PDF
    The use of bacteriophages, instead of antibodies, in the ELISA-based detection of bacterial strains was tested. This procedure appeared to be efficient, and specific strains of Salmonella enterica and Escherichia coli could be detected. The sensitivity of the assay was about 105 bacterial cells/well (106/ml), which is comparable with or outperforms other ELISA tests detecting intact bacterial cells without an enrichment step. The specificity of the assay depends on the kind of bacteriophage used. We conclude that the use of bacteriophages in the detection and identification of bacteria by an ELISA-based method can be an alternative to the use of specific antibodies. The advantages of the use of bacteriophages are their environmental abundance (and, thus, a possibility to isolate various phages with different specificities) and the availability of methods for obtaining large amounts of phage lysates, which are simple, rapid, cheap, and easy

    Recommended temperature metrics for carbon budget estimates, model evaluation and climate policy

    Get PDF
    Recent estimates of the amount of carbon dioxide that can still be emitted while achieving the Paris Agreement temperature goals are larger than previously thought. One potential reason for these larger estimates may be the different temperature metrics used to estimate the observed global mean warming for the historical period, as they affect the size of the remaining carbon budget. Here we explain the reasons behind these remaining carbon budget increases, and discuss how methodological choices of the global mean temperature metric and the reference period influence estimates of the remaining carbon budget. We argue that the choice of the temperature metric should depend on the domain of application. For scientific estimates of total or remaining carbon budgets, globally averaged surface air temperature estimates should be used consistently for the past and the future. However, when used to inform the achievement of the Paris Agreement goal, a temperature metric consistent with the science that was underlying and directly informed the Paris Agreement should be applied. The resulting remaining carbon budgets should be calculated using the appropriate metric or adjusted to reflect these differences among temperature metrics. Transparency and understanding of the implications of such choices are crucial to providing useful information that can bridge the science–policy gap

    The creatine kinase system and pleiotropic effects of creatine

    Get PDF
    The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans

    An integrated approach to quantifying uncertainties in the remaining carbon budget

    Get PDF
    The remaining carbon budget quantifies the future CO2 emissions to limit global warming below a desired level. Carbon budgets are subject to uncertainty in the Transient Climate Response to Cumulative CO2 Emissions (TCRE), as well as to non-CO2 climate influences. Here we estimate the TCRE using observational constraints, and integrate the geophysical and socioeconomic uncertainties affecting the distribution of the remaining carbon budget. We estimate a median TCRE of 0.44 °C and 5–95% range of 0.32–0.62 °C per 1000 GtCO2 emitted. Considering only geophysical uncertainties, our median estimate of the 1.5 °C remaining carbon budget is 440 GtCO2 from 2020 onwards, with a range of 230–670 GtCO2, (for a 67–33% chance of not exceeding the target). Additional socioeconomic uncertainty related to human decisions regarding future non-CO2 emissions scenarios can further shift the median 1.5 °C remaining carbon budget by ±170 GtCO2
    corecore