76 research outputs found

    The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds

    Get PDF
    In June 2005, a World Health Organization (WHO)-International Programme on Chemical Safety expert meeting was held in Geneva during which the toxic equivalency factors (TEFs) for dioxin-like compounds, including some polychlorinated biphenyls (PCBs), were reevaluated. For this reevaluation process, the refined TEF database recently published by Haws et al. (2006, Toxicol. Sci. 89, 4-30) was used as a starting point. Decisions about a TEF value were made based on a combination of unweighted relative effect potency (REP) distributions from this database, expert judgment, and point estimates. Previous TEFs were assigned in increments of 0.01, 0.05, 0.1, etc., but for this reevaluation, it was decided to use half order of magnitude increments on a logarithmic scale of 0.03, 0.1, 0.3, etc. Changes were decided by the expert panel for 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) (TEF = 0.3), 1,2,3,7,8-pentachlorodibenzofuran (PeCDF) (TEF = 0.03), octachlorodibenzo-p-dioxin and octachlorodibenzofuran (TEFs = 0.0003), 3,4,4′,5-tetrachlorbiphenyl (PCB 81) (TEF = 0.0003), 3,3′,4,4′,5,5′-hexachlorobiphenyl (PCB 169) (TEF = 0.03), and a single TEF value (0.00003) for all relevant mono-ortho-substituted PCBs. Additivity, an important prerequisite of the TEF concept was again confirmed by results from recent in vivo mixture studies. Some experimental evidence shows that non-dioxin-like aryl hydrocarbon receptor agonists/antagonists are able to impact the overall toxic potency of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds, and this needs to be investigated further. Certain individual and groups of compounds were identified for possible future inclusion in the TEF concept, including 3,4,4′-TCB (PCB 37), polybrominated dibenzo-p-dioxins and dibenzofurans, mixed polyhalogenated dibenzo-p-dioxins and dibenzofurans, polyhalogenated naphthalenes, and polybrominated biphenyls. Concern was expressed about direct application of the TEF/total toxic equivalency (TEQ) approach to abiotic matrices, such as soil, sediment, etc., for direct application in human risk assessment. This is problematic as the present TEF scheme and TEQ methodology are primarily intended for estimating exposure and risks via oral ingestion (e.g., by dietary intake). A number of future approaches to determine alternative or additional TEFs were also identified. These included the use of a probabilistic methodology to determine TEFs that better describe the associated levels of uncertainty and "systemic” TEFs for blood and adipose tissue and TEQ for body burde

    Meeting Report: Threats to Human Health and Environmental Sustainability in the Pacific Basin

    Get PDF
    The coastal zone of the Pacific Rim is home for about one-third of the world’s population. Disproportionate growth of Far Eastern economies has produced a disproportionate share of related environmental difficulties. As the region searches for acceptable compromises between growth and environmental quality, its influence on global environmental health is certain to increase. Consequences of global environmental change such as habitat alteration, storms, and sealevel rise will be particularly acute among Pacific Rim nations. Adverse health effects from arsenic exposure in Pacific Rim nations have been used to justify drinking water standards in the United States and elsewhere. As global manufacturing in the Pacific Rim increases, the centroid of global air quality and waste management issues will shift further toward Far Eastern nations. The Eleventh International Conference of the Pacific Basin Consortium (PBC) was held in September 2005 in Honolulu, Hawaii. The purpose of the conference was to bring together individuals to discuss regional challenges to sustainable growth. The historic emphasis of the conference on hazardous wastes in relation to human health makes the PBC an ideal forum for discussing technical aspects of sustainable economic growth in the Pacific region. That role is reflected in the 2005 PBC conference themes, which included management of arsenic in potable waters, air quality, climate change, pesticides, mercury, and electronics industry waste—each with emphasis on relationships to human health. Arsenic management exemplifies the manner in which the PBC can focus interdisciplinary discussion in a single technical area. The conference program provided talks on arsenic toxicology, treatment technologies, management of arsenic-bearing residuals from water treatment, and the probable societal costs and benefits of arsenic management

    Early deprivation induces competitive subordinance in C57BL/6 male mice

    Get PDF
    Rodent models have been widely used to investigate the impact of early life stress on adult health and behavior. However, the social dimension has rarely been incorporated into the analysis due to methodological limitations. This study characterized the effects of neonatal social isolation (early deprivation, ED) on adult C57BL/6 mouse behavior in a social context using our recently developed behavioral test protocols for group-housed mice. During the first two postnatal weeks, half of the pups per dam were separated from their dam and littermates for 3. h per day (ED group). Post weaning, ED and control pups were electronically tagged and co-housed. At 12. weeks, the mixed cohorts were transferred to IntelliCages, equipped with computer-controlled operant chambers. Access to the chambers was used as an index to analyze novel object response, behavioral flexibility, and competitive dominance with minimal experimenter intervention. In general, ED had greater effects on males; ED males exhibited reduced body weight, increased novelty response, and were subordinate to control littermates when competing for reward access. Male ED mice also demonstrated mildly impaired reversal learning. Analyzing gene expression changes in brain regions controlling emotion, stress, spatial memory, and executive function revealed reduced BDNF and c-Fos in hippocampal CA1, enhanced c-Fos in the basolateral amygdala, reduced Map2 while enhanced HSD11β2 in prefrontal cortex of ED males. In male mice, it was suggested that neonatal social isolation results in sustained changes in social behavior with altered function of limbic and frontal cortices

    Disruption of paired-associate learning in rat offspring perinatally exposed to dioxins

    Get PDF
    The prevalence of cognitive abnormalities in children has partly been ascribed to environmental chemical exposure. Appropriate animal models and tools for evaluating higher brain function are required to examine this problem. A recently developed behavioral test in which rats learn six unique flavor-location pairs in a test arena was used to evaluate paired-associate learning, a hallmark of the higher cognitive function that is essential to language learning in humans. Pregnant Long-Evans rats were dosed by gavage with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2,3,7,8-tetrabromodibenzo-p-dioxin (TBDD) at a dose of 0, 200, or 800 ng/kg (referred as Control, TCDD-200, TCDD-800, TBDD-200, or TBDD-800, hereafter) on gestational day 15, and the offspring was tested during adulthood. Paired-associate learning was found to be impaired in the TCDD-200 and TBDD-200 groups, but not in either group exposed to 800 ng/kg, the observations of which were ensured by non-cued trials. As for the emotional aspect, during habituation, the TCDD-200 and TBDD-200 groups showed significantly longer latencies to enter the test arena from a start box than the Control, TCDD-800, and TBDD-800 groups, suggesting that the TCDD-200 and TBDD-200 groups manifested anxiety-like behavior. Thus, both the chlorinated dioxin and its brominated congener affected higher brain function to a similar extent in a nearly identical manner. Use of the behavioral test that can evaluate paired-associate learning in rats demonstrated that in utero and lactational exposure to not only TCDD but also TBDD perturbed higher brain function in rat offspring in a nonmonotonic manner

    Towards comprehensive health risk assessments of chemicals for occupational and environmental health

    No full text
    corecore