8 research outputs found

    Focal hot spot induced by a central subclavian line on bone scan

    No full text
    The diagnostic accuracy of nuclear medicine reporting can be improved by awareness of these instrument-related artifacts. Both awareness and experience are also important when it comes to detecting and identifying normal (and abnormal) variants. We present a case of hot spot on the upper right chest in the region of right subclavicular region resulting from injection of radiotracer from central subclavian line. A 52-year-old woman with a history of left breast cancer and recent bone pain was referred to our nuclear medicine department for skeletal survey. Anterior views of chest show a focus of increased radiotracer uptake corresponding to anterior arch of one of the right second rib. The nuclear physician reported it as a focal rib bony lesion and recommended radiological evaluation. As technician later explained, physicians realized that injection site was a central subclavian line on the right side and hot spot on that region is due to injection site. The appearance of both skeletal and soft-tissue uptake depends heavily on imaging technique (such as the route of radiotracer administration) and the interpreting physicians should be aware of the impact of technical factors on image quality

    Design of polyelectrolyte core-shell and polyelectrolyte/non-polyelectrolyte Janus nanoparticles as drug nanocarriers

    No full text
    <p>Cross-linked poly(methacrylic acid) (PMAA) nanoparticles synthesized by distillation precipitation polymerization (DPP) were used as polyelectrolyte seeds in seeded emulsion polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and 2-hydroxyethyl methacrylate (HEMA). The use of DMAEMA and HEMA hydrophilic monomers as shell monomer fabricated a polyelectrolyte and a non-polyelectrolyte polymer in the presence of polyelectrolyte seed particles respectively. The effects of feeding approach and polymerization media on the morphology of the resulted particles were investigated. Production of polyelectrolyte and non-polyelectrolyte components in the presence of polyelectrolyte seed particles led to formation of composite particles with different morphologies including polyelectrolyte@polyelectrolyte core-shell and polyelectrolyte/non-polyelectrolyte Janus particles. Subsequently, to determine the behavior of the poly-electrolyte and non-polyelectrolyte shells, an acidic drug with the least tendency to the acidic polyelectrolyte core (vitamin C) was loaded onto synthesized PMAA seed particles and smart composite nanoparticles and its release behavior was studied in different conditions. Results showed that amount of loaded drug and release behavior depend significantly on the structure of utilized nanocarrier.</p

    Clinical perspective: Antibody-drug conjugates for the treatment of HER2-positive breast cancer

    No full text
    Antibody-drug conjugates (ADCs) are a promising class of cancer biopharmaceuticals that exploit the specificity of a monoclonal antibody (mAb) to selectively deliver highly cytotoxic small molecules to targeted cancer cells, leading to an enhanced therapeutic index through increased antitumor activity and decreased off-target toxicity. ADCs hold great promise for the treatment of patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer after the approval and tremendous success of trastuzumab emtansine and trastuzumab deruxtecan, representing a turning point in both HER2-positive breast cancer treatment and ADC technology. Additionally and importantly, a total of 29 ADC candidates are now being investigated in different stages of clinical development for the treatment of HER2-positive breast cancer. The purpose of this review is to provide an insight into the ADC field in cancer treatment and present a comprehensive overview of ADCs approved or under clinical investigation for the treatment of HER2-positive breast cancer
    corecore