3,869 research outputs found

    Fabrication of Embedded Microvalve on PMMA Microfluidic Devices through Surface Functionalization

    Get PDF
    The integration of a PDMS membrane within orthogonally placed PMMA microfluidic channels enables the pneumatic actuation of valves within bonded PMMA-PDMS-PMMA multilayer devices. Here, surface functionalization of PMMA substrates via acid catalyzed hydrolysis and air plasma corona treatment were investigated as possible techniques to permanently bond PMMA microfluidic channels to PDMS surfaces. FTIR and water contact angle analysis of functionalized PMMA substrates showed that air plasma corona treatment was most effective in inducing PMMA hydrophilicity. Subsequent fluidic tests showed that air plasma modified and bonded PMMA multilayer devices could withstand fluid pressure at an operational flow rate of 9 mircoliters/min. The pneumatic actuation of the embedded PDMS membrane was observed through optical microscopy and an electrical resistance based technique. PDMS membrane actuation occurred at pneumatic pressures of as low as 10kPa and complete valving occurred at 14kPa for 100 micrometers x 100 micrometers channel cross-sections.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Computational Aspects of Protein Functionality

    Get PDF
    The purpose of this short article is to examine certain aspects of protein functionality with relation to some key organizing ideas. This is important from a computational viewpoint in order to take account of modelling both biological systems and knowledge of these systems. We look at some of the lexical dimensions of the function and how certain constructs can be related to underlying ideas. The pervasive computational metaphor is then discussed in relation to protein multifunctionality, and the specific case of von Willebrand factor as a ‘smart’ multifunctional protein is briefly considered. Some diagrammatic techniques are then introduced to better articulate protein function

    On the Nesterov-Todd Direction in Semidefinite Programming

    Full text link
    On the Nesterov-Todd Direction in Semidefinite Programmin

    Smooth-muscle-associated contractile protein in renal mesenchymal tumour cells and in transformed cells from DMN-injected rats.

    Get PDF
    Cryostat sections and established in vitro cultures of dimethylnitrosamine(DMN)-induced renal mesenchymal tumours and monolayer cultures of transformed kidney cells derived from rats treated with a carcinogenic dose of DMN were examined by indirect immunofluorescence with human serum containing smooth muscle antibody. Eight mesenchymal tumours examined showed filamentous cytoplasmic staining of spindle cells infiltrating between renal tubules, whilst in normal kidneys interstitial cells were only weakly positive. In established in vitro cultures from 6 mesenchymal tumours, different patterns of staining were observed in morphologically different cell forms, ranging from fine filamentous staining in giant cells to diffuse cytoplasmic fluorescence in small bipolar cells, and cell outline staining in polygonal cells. In addition filamentous staining of microvillous projections and nucleolar staining were observed in some tumour cells. Monolayer cultures of transformed kidney cells showed strong staining of coarse, randomly-orientated cytoplasmic filaments, whilst fibroblasts cultured from normal rat kidney demonstrated an ordered array of fine, parallel filaments. Specificity of the immunofluorescent staining reaction was established by failure to obtain staining with normal serum, with smooth muscle antibody serum neutralized by homogenates of smooth muscle or extracts containing actin derived from smooth muscle. These results indicate that there is an apparent increase of actin-like contractile microfilaments in transformed cells and in renal mesenchymal tumours. The cytoplasmic contracile microfilaments in these cells may play a role in tumour cell mobility and invasion

    Tidal signals in ocean-bottom magnetic measurements of the Northwestern Pacific: observation versus prediction

    Get PDF
    Motional induction in the ocean by tides has long been observed by both land and satellite measurements of magnetic fields. While these signals are weak (∼10 nT) when compared to the main magnetic field, their persistent nature makes them important for consideration during geomagnetic field modelling. Previous studies have reported several discrepancies between observations and numerical predictions of the tidal magnetic signals and those studies were inconclusive of the source of the error. We address this issue by (1) analysing magnetometer data from ocean-bottom stations, where the low-noise and high-signal environment is most suitable for detecting the weak tidal magnetic signals, (2) by numerically predicting the magnetic field with a spatial resolution that is 16times higher than the previous studies and (3) by using four different models of upper-mantle conductivity. We use vector magnetic data from six ocean-bottom electromagnetic (OBEM) stations located in the Northwestern Pacific Ocean. The OBEM tidal amplitudes were derived using an iteratively re-weighted least-squares (IRLS) method and by limiting the analysis of lunar semidiurnal (M2), lunar elliptic semidinurnal (N2) and diurnal (O1) tidal modes to the night-time. Using a 3-D electromagnetic induction solver and the TPX07.2 tidal model, we predict the tidal magnetic signal. We use earth models with non-uniform oceans and four 1-D mantle sections underneath taken from Kuvshinov and Olsen, Shimizu etal. and Baba etal. to compare the effect of upper-mantle conductivity. We find that in general, the predictions and observations match within 10-70 per cent across all the stations for each of the tidal modes. The median normalized percent difference (NPD) between observed and predicted amplitudes for the tidal modes M2, N2 and O1 were 15 per cent, 47 per cent and 98 per cent, respectively, for all the stations and models. At the majority of stations, and for each of the tidal modes, the higher resolution (0.25°×0.25°) modelling gave amplitudes consistently closer to the observations than the lower resolution (1°×1°) modelling. The difference in lithospheric resistance east and west of the Izu-Bonin trench system seems to be affecting the model response and observations in the O1 tidal mode. This response is not seen in the M2 and N2 modes, thereby indicating that the O1 mode is more sensitive to lithospheric resistanc

    Flow in straight through labyrinth seal: a comparison of fluid structure interaction effects

    Get PDF
    A numerical study has been conducted to study the fluid structural interaction in a straight through labyrinth seal (half-model). The structural effect is identified and the fluid force is correlated with it which gives an estimate of the deformation that takes place in the seal. The distribution of the radial deformation along the seal axis for the rotational speed ranging from 6000 rpm to 15000 rpm is reported in this paper. The radial deformation which decreases the clearance between the rotating and stationary parts of sealing surface is an indication that centrifugal growth occurs. This finding is in agreement with other numerical and experimental work reported in the literature

    Role of Interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression

    Get PDF
    Background: The use of TNF inhibitors has been a major progress in the treatment of chronic inflammation. However, not all patients respond. In addition, response will be often lost when treatment is stopped. These clinical aspects indicate that other cytokines might be involved and we focus here on the role of IL-17. In addition, the chronic nature of joint inflammation may contribute to reduced response and enhanced chronicity. Therefore we studied the capacity of IL-17 to regulate synoviolin, an E3 ubiquitin ligase implicated in synovial hyperplasia in human rheumatoid arthritis (RA) FLS and in chronic reactivated streptococcal cell wall (SCW)-induced arthritis.<p></p> Methodology/Principal Findings: Chronic reactivated SCW-induced arthritis was examined in IL-17R deficient and wild-type mice. Synoviolin expression was analysed by real-time RT-PCR, Western Blot or immunostaining in RA FLS and tissue, and p53 assessed by Western Blot. Apoptosis was detected by annexin V/propidium iodide staining, SS DNA apoptosis ELISA kit or TUNEL staining and proliferation by PCNA staining. IL-17 receptor A (IL-17RA), IL-17 receptor C (IL-17-RC) or synoviolin inhibition were achieved by small interfering RNA (siRNA) or neutralizing antibodies. IL-17 induced sustained synoviolin expression in RA FLS. Sodium nitroprusside (SNP)-induced RA FLS apoptosis was associated with reduced synoviolin expression and was rescued by IL-17 treatment with a corresponding increase in synoviolin expression. IL-17RC or IL-17RA RNA interference increased SNP-induced apoptosis, and decreased IL-17-induced synoviolin. IL-17 rescued RA FLS from apoptosis induced by synoviolin knockdown. IL-17 and TNF had additive effects on synoviolin expression and protection against apoptosis induced by synoviolin knowndown. In IL-17R deficient mice, a decrease in arthritis severity was characterized by increased synovial apoptosis, reduced proliferation and a marked reduction in synoviolin expression. A distinct absence of synoviolin expressing germinal centres in IL-17R deficient mice contrasted with synoviolin positive B cells and Th17 cells in synovial germinal centre-like structures.<p></p> Conclusion/Significance: IL-17 induction of synoviolin may contribute at least in part to RA chronicity by prolonging the survival of RA FLS and immune cells in germinal centre reactions. These results extend the role of IL-17 to synovial hyperplasia.<p></p&gt

    Angiogenically active vascular endothelial growth factor is over-expressed in malignant human and rat prostate carcinoma cells

    Get PDF
    Vascular endothelial growth factor (VEGF) is one of the most potent factors for stimulating angiogenesis, an essential process required for expansion of primary tumour and dissemination of malignant cells. To investigate the possible role of VEGF in facilitating metastasis of prostate cancer via stimulating angiogenesis, we have used Northern and slot blotting, reverse transcription polymerase chain reaction, nucleotide sequence analysis and enzyme-linked immunosorbent assay to compare the VEGF expression in series of human and rat cell lines with either benign or malignant characteristics. We have also employed the chick chorioallantoic membrane (CAM) assay to measure the angiogenic activity of the VEGF derived from both benign and malignant cells. The level of VEGF mRNA expressed in the seven malignant human and rat cell lines is 3.5- to 10-fold higher than that expressed in the benign cell lines. The three metastatic variants, generated by transfection of a benign cell line with DNA extracted from prostate carcinoma cells, expressed 2.5 to 5 times more VEGF mRNA than their parental benign cells. While VEGF 121 and 165 were predominantly expressed by both the benign and malignant cells, the transcript representing VEGF 189 isoform was only detected in the malignant cells. At protein level, three human malignant cell lines produced more VEGF (2.7–7.9 ng ml−1) than the benign cell line (1.3 ng ml−1). CAM assay detected a VEGF-dependent angiogenic activity in the medium from malignant cells, but only a relatively weak VEGF-independent activity in the medium from benign cells. These results demonstrated that malignant cells did over-express VEGF and only the VEGF derived from malignant cells was angiogenically active. Thus, we suggest that the VEGF produced by malignant cells might play an important role in facilitating metastasis of prostatic cancer. © 2000 Cancer Research Campaig
    corecore