462 research outputs found
Cumulative theoretical uncertainties in lithium depletion boundary age
We performed a detailed analysis of the main theoretical uncertainties
affecting the age at the lithium depletion boundary (LDB). To do that we
computed almost 12000 pre-main sequence models with mass in the range [0.06,
0.4] M_sun by varying input physics (nuclear reaction cross-sections, plasma
electron screening, outer boundary conditions, equation of state, and radiative
opacity), initial chemical elements abundances (total metallicity, helium and
deuterium abundances, and heavy elements mixture), and convection efficiency
(mixing length parameter, alpha_ML). As a first step, we studied the effect of
varying these quantities individually within their extreme values. Then, we
analysed the impact of simultaneously perturbing the main input/parameters
without an a priori assumption of independence. Such an approach allowed us to
build for the first time the cumulative error stripe, which defines the edges
of the maximum uncertainty region in the theoretical LDB age. We found that the
cumulative error stripe is asymmetric and dependent on the adopted mixing
length value. For alpha_ML = 1.00, the positive relative age error ranges from
5 to 15 per cent, while for solar-calibrated mixing length, the uncertainty
reduces to 5-10 per cent. A large fraction of such an error (about 40 per cent)
is due to the uncertainty in the adopted initial chemical elements abundances.Comment: LDB tables for several [Fe/H] values are available at the url:
http://astro.df.unipi.it/stellar-models/ld
Effect of planet ingestion on low-mass stars evolution: the case of 2MASS J08095427--4721419 star in the Gamma Velorum cluster
We analysed the effects of planet ingestion on the characteristics of a
pre-MS star similar to the Gamma Velorum cluster member 2MASS
J08095427--4721419 (#52). We discussed the effects of changing the age at
which the accretion episode occurs, the mass of the ingested planet and its
chemical composition. We showed that the mass of the ingested planet required
to explain the current [Fe/H]^#52 increases by decreasing the age and/or
by decreasing the Iron content of the accreted matter.
We compared the predictions of a simplified accretion method -- where only
the variation of the surface chemical composition is considered -- with that of
a full accretion model that properly accounts for the modification of the
stellar structure. We showed that the two approaches result in different
convective envelope extension which can vary up to 10 percent. We discussed the
impact of the planet ingestion on a stellar model in the colour-magnitude
diagram, showing that a maximum shift of about 0.06 dex in the colour and 0.07
dex in magnitude are expected and that such variations persist even much later
the accretion episode. We also analysed the systematic bias in the stellar mass
and age inferred by using a grid of standard non accreting models to recover
the characteristics of an accreting star. We found that standard non accreting
models can safely be adopted for mass estimate, as the bias is <= 6 percent,
while much more caution should be used for age estimate where the differences
can reach about 60 percent.Comment: Accepted for publication in MNRAS. 13 pages, 3 tables, 9 figure
Dust photophoretic transport around a T Tauri star: Implications for comets composition
There is a growing body of evidences for the presence of crystalline material
in comets. These crystals are believed to have been annealed in the inner part
of the proto-solar nebula, while comets should have been formed in the outer
regions. Several transport processes have been proposed to reconcile these two
facts; among them a migration driven by photophoresis. The primarily goal of
this work is to assess whether disk irradiation by a Pre-Main Sequence star
would influence the photophoretic transport. To do so, we have implemented an
evolving 1+1D model of an accretion disk, including advanced numerical
techniques, undergoing a time-dependent irradiation, consistent with the
evolution of the proto-Sun along the Pre-Main Sequence. The photophoresis is
described using a formalism introduced in several previous works. Adopting the
opacity prescription used in these former studies, we find that the disk
irradiation enhances the photophoretic transport: the assumption of a disk
central hole of several astronomical units in radius is no longer strictly
required, whereas the need for an ad hoc introduction of photoevaporation is
reduced. However, we show that a residual trail of small particles could
annihilate the photophoretic driven transport via their effect on the opacity.
We have also confirmed that the thermal conductivity of transported aggregates
is a crucial parameter which could limit or even suppress the photophoretic
migration and generate several segregation effects
Theoretical uncertainties on the radius of low- and very-low mass stars
We performed an analysis of the main theoretical uncertainties that affect
the radius of low- and very-low mass-stars predicted by current stellar models.
We focused on stars in the mass range 0.1-1Msun, on both the zero-age
main-sequence (ZAMS) and on 1, 2 and 5 Gyr isochrones. First, we quantified the
impact on the radius of the uncertainty of several quantities, namely the
equation of state, radiative opacity, atmospheric models, convection efficiency
and initial chemical composition. Then, we computed the cumulative radius error
stripe obtained by adding the radius variation due to all the analysed
quantities. As a general trend, the radius uncertainty increases with the
stellar mass. For ZAMS structures the cumulative error stripe of very-low mass
stars is about and percent, while at larger masses it increases
up to and percent. The radius uncertainty gets larger and age
dependent if isochrones are considered, reaching for Msun about
percent at an age of 5 Gyr. We also investigated the radius
uncertainty at a fixed luminosity. In this case, the cumulative error stripe is
the same for both ZAMS and isochrone models and it ranges from about
percent to and () percent. We also showed that the sole
uncertainty on the chemical composition plays an important role in determining
the radius error stripe, producing a radius variation that ranges between about
and percent on ZAMS models with fixed mass and about
and percent at a fixed luminosity.Comment: 18 pages, 20 figures, 1 table; accepted for publication in MNRA
Primera cita de las tres especies de Oxycraspedus Kuschel (Coleóptera: Belidae) en Argentina y uso de un modelo predictivo para comparar su distribución potencial con el rango de su planta huésped, la Araucaria araucana
Se reportan por primera vez en Argentina las tres especies de Oxycraspedus Kuschel (Belidae: Oxycoryninae) y se añaden a su distribución en Chile. Estos gorgojos son de interés debido a su asociación con el pehuén Araucaria araucana, una especie de gran interés en temas de conservación. Los datos sobre su distribución son valiosos para proteger la biodiversidad en áreas de la Patagonia. La distribución potencial de Oxycraspedus predicha por un modelo a partir de variables bioclimáticas, es coincidente, como se esperaba, con el rango geográfico de su planta huésped, la araucaria.The first records of the three known species of Oxycraspedus Kuschel (Belidae: Oxycoryninae) in Argentina are reported, and added to their known distribution in Chile. These weevils are of interest because of their association with the pehuén or monkey puzzle tree, Araucaria araucana, a species of conservation concern. Their distribution data are of value for the protection of biodiversity in natural areas of Patagonia. The potential distribution of Oxycraspedus, as predicted by a model using bioclimatic variables, is coincident as expected, with the geographic range of the araucaria host-plant.Fil: Ferrer, Maria Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Marvaldi, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Tognelli, Marcelo Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentin
Lithium-7 surface abundance in pre-MS stars. Testing theory against clusters and binary systems
The disagreement between theoretical predictions and observations for surface
lithium abundance in stars is a long-standing problem, which indicates that the
adopted physical treatment is still lacking in some points. However, thanks to
the recent improvements in both models and observations, it is interesting to
analyse the situation to evaluate present uncertainties. We present a
consistent and quantitative analysis of the theoretical uncertainties affecting
surface lithium abundance in the current generation of models. By means of an
up-to-date and well tested evolutionary code, FRANEC, theoretical errors on
surface 7Li abundance predictions, during the pre-main sequence (pre-MS) and
main sequence (MS) phases, are discussed in detail. Then, the predicted surface
7Li abundance was tested against observational data for five open clusters,
namely Ic 2602, \alpha Per, Blanco1, Pleiades, and Ngc 2516, and for four
detached double-lined eclipsing binary systems. Stellar models for the
aforementioned clusters were computed by adopting suitable chemical
composition, age, and mixing length parameter for MS stars determined from the
analysis of the colour-magnitude diagram of each cluster. We restricted our
analysis to young clusters, to avoid additional uncertainty sources such as
diffusion and/or radiative levitation efficiency. We confirm the disagreement,
within present uncertainties, between theoretical predictions and 7Li
observations for standard models. However, we notice that a satisfactory
agreement with observations for 7Li abundance in both young open clusters and
binary systems can be achieved if a lower convection efficiency is adopted
during the pre-MS phase with respect to the MS one.Comment: 10 pages, 5 figures. Accepted for publication in A&
Testing pre-main sequence models: the power of a Bayesian approach
Pre-main sequence (PMS) models provide invaluable tools for the study of star
forming regions as they allow to assign masses and ages to young stars. Thus it
is of primary importance to test the models against observations of PMS stars
with dynamically determined mass. We developed a Bayesian method for testing
the present generation of PMS models which allows for a quantitative comparison
with observations, largely superseding the widely used isochrones and tracks
qualitative superposition.
Using the available PMS data we tested the newest PISA PMS models
establishing their good agreement with the observations. The data cover a mass
range from ~0.3 to ~3.1 Msun, temperatures from ~3x10^3 to ~1.2x10^4 K and
luminosities from ~3x10^-2 to ~60 Lsun. Masses are correctly predicted within
20% of the observed values in most of the cases and for some of them the
difference is as small as 5%. Nevertheless some discrepancies are also observed
and critically discussed.
By means of simulations, using typical observational errors, we evaluated the
spread of log \tau_sim - log \tau_rec, i.e. simulated minus recovered ages
distribution of the single objects. We also found that stars in binary systems
simulated as coeval might be recovered as non coeval, due to observational
errors. The actual fraction of fake non coevality is a complex function of the
simulated ages, masses and mass ratios. We demonstrated that it is possible to
recover the systems' ages with better precision than for single stars using the
composite age-probability distribution, i.e. the product of the components' age
distributions. Using this valuable tool we estimated the ages of the presently
observed PMS binary systems.Comment: Accepted for publication in MNRAS. Fig.2 presented in low-resolution
in this versio
Accreting pre-main sequence models and abundance anomalies in globular clusters
We investigated the possibility of producing helium enhanced stars in
globular clusters by accreting polluted matter during the pre-main sequence
phase. We followed the evolution of two different classes of pre-main sequence
accreting models, one which neglects and the other that takes into account the
protostellar evolution.
We analysed the dependence of the final central helium abundance, of the
tracks position in the HR diagram and of the surface lithium abundance
evolution on the age at which the accretion of polluted material begins and on
the main physical parameters that govern the protostellar evolution. The later
is the beginning of the late accretion and the lower are both the central
helium and the surface lithium abundances at the end of the accretion phase and
in ZAMS (Zero Age Main Sequence). In order to produce a relevant increase of
the central helium content the accretion of polluted matter should start at
ages lower than 1 Myr. The inclusion of the protostellar evolution has a strong
impact on the ZAMS models too. The adoption of a very low seed mass (i.e. 0.001
M) results in models with the lowest central helium and surface
lithium abundances. The higher is the accretion rate and the lower is the final
helium content in the core and the residual surface lithium. In the worst case
-- i.e. seed mass 0.001 M and accretion rate M
yr -- the central helium is not increased at all and the surface lithium
is fully depleted in the first few million years.Comment: Accepted for pubblication in MNRAS. 19 pages, 15 figures, 2 table
Low mass star formation and subclustering in the HII regions RCW 32, 33 and 27 of the Vela Molecular Ridge. A photometric diagnostics to identify M-type stars
Most stars born in clusters and recent results suggest that star formation
(SF) preferentially occurs in subclusters. Studying the morphology and SF
history of young clusters is crucial to understanding early SF. We identify the
embedded clusters of young stellar objects (YSOs) down to M stars, in the HII
regions RCW33, RCW32 and RCW27 of the Vela Molecular Ridge. Our aim is to
characterise their properties, such as morphology and extent of the clusters in
the three HII regions, derive stellar ages and the connection of the SF history
with the environment. Through public photometric surveys such as Gaia, VPHAS,
2MASS and Spitzer/GLIMPSE, we identify YSOs with IR, Halpha and UV excesses, as
signature of circumstellar disks and accretion. In addition, we implement a
method to distinguish M dwarfs and giants, by comparing the reddening derived
in several optical/IR color-color diagrams, assuming suitable theoretical
models. Since this diagnostic is sensitive to stellar gravity, the procedure
allows us to identify pre-main sequence stars. We find a large population of
YSOs showing signatures of circumstellar disks with or without accretion. In
addition, with the new technique of M-type star selection, we find a rich
population of young M stars with a spatial distribution strongly correlated to
the more massive population. We find evidence of three young clusters, with
different morphology. In addition, we identify field stars falling in the same
region, by securely classifying them as giants and foreground MS stars. We
identify the embedded population of YSOs, down to about 0.1 Msun, associated
with the HII regions RCW33, RCW32 and RCW27 and the clusters Vela T2, Cr197 and
Vela T1, respectively, showing very different morphologies. Our results suggest
a decreasing SF rate in Vela T2 and triggered SF in Cr197 and Vela T1.Comment: Accepted for publication in A&A; 20 pages, 22 figures, 6 table
The distance to the young cluster NGC 7129 and its age
The dust cloud TGU H645 P2 and embedded in it young open cluster NGC 7129 are
investigated using the results of medium-band photometry of 159 stars in the
Vilnius seven-colour system down to V = 18.8 mag. The photometric data were
used to classify about 50 percent of the measured stars in spectral and
luminosity classes. The extinction A_V vs. distance diagram for the 20x20
arcmin area is plotted for 155 stars with two-dimensional classification from
the present and the previous catalogues. The extinction values found range
between 0.6 and 3.4 mag. However, some red giants, located in the direction of
the dense parts of the cloud, exhibit the infrared extinction equivalent up to
A_V = 13 mag. The distance to the cloud (and the cluster) is found to be 1.15
kpc (the true distance modulus 10.30 mag). For determining the age of NGC 7129,
a luminosity vs. temperature diagram for six cluster members of spectral
classes B3 to A1 was compared with the Pisa pre-main-sequence evolution tracks
and the Palla birthlines. The cluster can be as old as about 3 Myr, but star
forming continues till now as witnessed by the presence in the cloud of many
younger pre-main-sequence objects identified with photometry from 2MASS,
Spitzer and WISE infrared surveys.Comment: 8 pages, 6 fugures, full Table 1 online. Accepted for publication in
MNRAS on 2013 November 3
- …
