88 research outputs found

    Structures and physiological functions of silica bodies in the epidermis of rice plants

    Get PDF
    We characterized silica structures in the epidermis of rice plant leaves and investigated their physiological functions from optical and mechanical viewpoints. By treating the distribution of silica bodies as a triangular lattice in the xy plane, and performing a theoretical optical analysis on this lattice, we discovered that a reduction in the photonic density of states may inhibit leaves of rice plant from being heated markedly higher than 20 degrees C. Ladderlike structures in the epidermis were mechanically investigated. These structures are conjectured to inhibit flat leaves from undergoing twisting torsions, which may assist the leaf to absorb sunlight more effectively for photosynthesis. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3232204]ArticleAPPLIED PHYSICS LETTERS. 95(12):123703 (2009)journal articl

    Wide-bandgap GaN-based watt-class photonic-crystal lasers

    Get PDF
    青色GaN系フォトニック結晶レーザーの高出力・高ビーム品質動作に成功 --次世代の高品位レーザー加工、高輝度照明、水中LiDAR等の実現に向けて--. 京都大学プレスリリース. 2022-11-04.Short-wavelength (blue-violet-to-green) lasers with high power and high beam quality are required for various applications including the machining of difficult-to-process materials and high-brightness illuminations and displays. Promising light sources for such applications are wide-bandgap GaN-based photonic-crystal surface-emitting lasers (PCSELs), which are based on two-dimensional resonance in the photonic crystal. Developments of these devices have lagged behind those of longer-wavelength GaAs-based PCSELs, because device designs for achieving robust two-dimensional resonance and a nanofabrication process that avoids introducing disorders have remained elusive for wide-bandgap GaN-based materials. Here, we address these issues and successfully realize GaN-based PCSELs with high, watt-class (>1 W) output power and a circular, single-lobed beam with a very narrow (~0.2°) divergence angle at blue wavelengths. In addition, we demonstrate continuous-wave operation with a high output power (~320 mW) and a high beam quality (M²~1). Our results will enable the use of GaN-based PCSELs in the above-mentioned applications

    Organizer-Like Reticular Stromal Cell Layer Common to Adult Secondary Lymphoid Organs

    Get PDF
    Abstract Mesenchymal stromal cells are crucial components of secondary lymphoid organs (SLOs). Organogenesis of SLOs involves specialized stromal cells, designated lymphoid tissue organizer (LTo) in the embryonic anlagen; in the adult, several distinct stromal lineages construct elaborate tissue architecture and regulate lymphocyte compartmentalization. The relationship between the LTo and adult stromal cells, however, remains unclear, as does the precise number of stromal cell types that constitute mature SLOs are unclear. From mouse lymph nodes, we established a VCAM-1+ICAM-1+MAdCAM-1+ reticular cell line that can produce CXCL13 upon LTβR stimulation and support primary B cell adhesion and migration in vitro. A similar stromal population sharing many characteristics with the LTo, designated marginal reticular cells (MRCs), was found in the outer follicular region immediately underneath the subcapsular sinus of lymph nodes. Moreover, MRCs were commonly observed at particular sites in various SLOs even in Rag2−/− mice, but were not found in ectopic lymphoid tissues, suggesting that MRCs are a developmentally determined element. These findings lead to a comprehensive view of the stromal composition and architecture of SLOs

    The Amelioration of Renal Damage in Skp2-Deficient Mice Canceled by p27 Kip1 Deficiency in Skp2−/− p27−/− Mice

    Get PDF
    SCF-Skp2 E3 ubiquitin ligase (Skp2 hereafter) targets several cell cycle regulatory proteins for degradation via the ubiquitin-dependent pathway. However, the target-specific physiological functions of Skp2 have not been fully elucidated in kidney diseases. We previously reported an increase in Skp2 in progressive nephropathy and amelioration of unilateral ureteral obstruction (UUO) renal injury associated with renal accumulation of p27 in Skp2−/− mice. However, it remains unclear whether the amelioration of renal injury in Skp2−/− mice is solely caused by p27 accumulation, since Skp2 targets several other proteins. Using Skp2−/−p27−/− mice, we investigated whether Skp2 specifically targets p27 in the progressive nephropathy mediated by UUO. In contrast to the marked suppression of UUO renal injury in Skp2−/− mice, progression of tubular dilatation associated with tubular epithelial cell proliferation and tubulointerstitial fibrosis with increased expression of collagen and α-smooth muscle actin were observed in the obstructed kidneys in Skp2−/−p27−/− mice. No significant increases in other Skp2 target proteins including p57, p130, TOB1, cyclin A and cyclin D1 were noted in the UUO kidney in Skp2−/− mice, while p21, c-Myc, b-Myb and cyclin E were slightly increased. Contrary to the ameliorated UUO renal injure by Skp2-deficiency, the amelioration was canceled by the additional p27-deficiency in Skp2−/−p27−/− mice. These findings suggest a pathogenic role of the reduction in p27 targeted by Skp2 in the progression of nephropathy in UUO mice

    Discrete Change in Magnetization by Chiral Soliton Lattice Formation in the Chiral Magnet Cr1/3NbS2

    Get PDF
    In the chiral magnet Cr1/3NbS2, discrete changes in the magnetization (M) caused by the formation of a chiral soliton lattice (CSL) were observed in magnetization curve measurements using a single crystal of submillimeter thickness. When M is measured with a minimal increment of the magnetic field H, 0.15 Oe, discrete changes in M are observed in the H region that exhibits definite magnetic hysteresis. In particular, enormous discrete changes in M are observed as H decreases from the field above the saturation field, while fine M steps are also found in the intermediate H range independently of the sweeping direction of the field. The former is considered as a type of enormous Barkhausen effect associated with the CSL formation. The latter originates from the change in soliton number during the CSL formation

    Geometrical protection of topological magnetic solitons in microprocessed chiral magnets

    Get PDF
    A chiral soliton lattice stabilized in a monoaxial chiral magnet CrNb3S6 is a magnetic superlattice consisting of magnetic kinks with a ferromagnetic background. The magnetic kinks are considered to be topological magnetic solitons (TMSs). Changes in the TMS number yield discretized responses in magnetization and electrical conductivity, and this effect is more prominent in smaller crystals. We demonstrate that, in microprocessed CrNb3S6 crystals, TMSs are geometrically protected through element-selected micromagnetometry using soft x-ray magnetic circular dichroism (MCD). A series of x-ray MCD data is supported by mean-field and micromagnetic analyses. By designing the microcrystal geometry, TMS numbers can be successfully changed and fixed over a wide range of magnetic fields
    corecore