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A chiral soliton lattice stabilized in a monoaxial chiral magnet CrNb3S6 is a magnetic superlattice consisting of
magnetic kinks with a ferromagnetic background. The magnetic kinks are considered to be topological magnetic
solitons (TMSs). Changes in the TMS number yield discretized responses in magnetization and electrical
conductivity, and this effect is more prominent in smaller crystals. We demonstrate that, in microprocessed
CrNb3S6 crystals, TMSs are geometrically protected through element-selected micromagnetometry using soft
x-ray magnetic circular dichroism (MCD). A series of x-ray MCD data is supported by mean-field and
micromagnetic analyses. By designing the microcrystal geometry, TMS numbers can be successfully changed
and fixed over a wide range of magnetic fields.

DOI: 10.1103/PhysRevB.97.024408

I. INTRODUCTION

A violation of space-inversion symmetry entails a
Dzyaloshinskii-Moriya (D-M) interaction originating from the
spin-orbit interaction [1,2], which stabilizes a chiral heli-
magnetic spin alignment [Fig. 1(a)]. It provides a promis-
ing scientific field for topological magnetic solitons (TMSs)
[3]. The chiral helimagnetic texture is not equivalent to the
helimagnetic texture stabilized in rare-earth metals, where
conduction electrons mediate interaction between 4f localized
moments. In the latter, two types of helicities coexist.

For instance, in monoaxial chiral magnets with a type of
D-M vector, a dc magnetic field H perpendicular to the chiral
helical axis untwists the helimagnetic alignment toward the
forced-ferromagnetic state [Fig. 1(c)] via the formation of a
chiral soliton lattice [CSL; Fig. 1(b)] [4–6]. Here, the magnetic
kink type of solitonic object is a TMS. The intermediate
CSL is a spin superlattice that consists of 2π -twisted TMSs
partitioned by ferromagnetic parts. On the other hand, in the
cubic chiral magnets with three equivalent D-M vectors such
as MnSi [7,8] and FeGe [9], the vortex type of solitonic object
constructs the two-dimensional solitonic texture termed the
skyrmion lattice in the finite H region [10,11]. The skyrmion
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lattice is influenced by the geometry of the specimens [12–14].
Thus, in experimental studies of TMSs, the technique of
microfabrication is important.

In a prototype monoaxial chiral magnet, CrNb3S6, Lorentz
TEM observations on microprocessed specimens proved the
existence of CSL [6,15]. Changes in the TMS number were
detected via incremental changes in magnetoresistance [6,16],
indicating that the TMS number behaves as a topological
quantum number [16,17]. Early studies on bulk CrNb3S6

crystals showed a near-reversible magnetization [18,19], which
was reproduced by mean-field (MF) results determined by
the minimum-energy conditions [4,5]. However, on reducing
the total number of TMSs that the soliton system holds, the
topological nature of the TMSs manifests as a discretized
response of physical properties such as magnetoresistance,
magnetic torque, and magnetic resonance [6,16,20–22]. In-
deed, as suggested theoretically in a few TMS systems [23],
precise magnetization measurements with minute H steps
showed several tiny magnetization jumps, even in millimeter-
sized single crystals [18,24,25].

Thus, specimens with dimensions reduced down to less than
the crystalline grain size are advantageous to demonstrate the
existence of the chiral solitons and their size effects [6,16]. A
magnetoresistance measurement of a micrometer-scale speci-
men demonstrated the soliton confinement effects in a finite-
size system [16], yielding important evidence of topological
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(c)

FIG. 1. Images of (a) a helimagnet, (b) a chiral soliton lattice, and
(c) a forced ferromagnet. In (b), the dc magnetic field H applied to
the chiral helical axis stabilizes CSL.

spin texture triggered by the D-M interaction. Here, further
accumulation of magnetic data on the finite-size effects should
lead to a deeper understanding of chiral solitons. Although
technical difficulties impede highly sensitive magnetometry in
microprocessed specimens, revealing the fundamental process
by which TMSs are inserted or released in the system and iden-
tifying a method of controlling and manipulating the number
of TMSs remain important areas of research. We address these
questions by measuring the element-specific magnetization
for Cr ions MCr using soft x-ray magnetic circular dichroism
(MCD) in microprocessed specimens and by comparing the
experimental results with numerical calculations.

II. METHODS

A. Materials

A single crystal of CrNb3S6 was synthesized using a pre-
viously described procedure [26]. Micrometer-scale crystals
that were typically 10 × 10 × 1 μm3 in size were cut from
the single crystal using a focused ion beam, and the thickness
of the area exposed to measurement was reduced to approxi-
mately 0.1 μm. Specimens A, B, and C were mounted over a
5-μm-diameter pinhole in a Ta plate (Fig. S1 [27]) by locally
depositing tungsten, as shown in Figs. 2(a)–2(c). The Ta plate
is impermeable to x rays, and therefore, the magnetic data
were detected from only the central part of the specimen that
was located over the pinhole. For specimen C, the surrounding
wall with a height of 1 μm was removed after the thinning and
mounting processes.

B. X-ray magnetic circular dichroism

The soft x-ray MCD measurement of a transmission mode
was conducted using the twin-helical undulator beamline,
BL25SU, of SPring-8 [28]. The microprocessed specimen
on the Ta substrate was fixed to the top of a cryotube with
an indium thermal conductive sheet. The thickness of the
specimen’s transparent area, namely, the transmission length
for the MCD measurement, was approximately 0.10 μm. The
measurements in transmittance mode were performed at 10 and
36 K, which are sufficiently lower than the critical temperature
of approximately 130 K. The angle between the direction of
the magnetic field H and the x-ray beam axis was fixed to
be 10◦. The x-ray beam axis was tuned to be perpendicular
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FIG. 2. Images and schematics of micrometer-sized CrNb3S6

specimens (a) A, (b) B, and (c) C, each attached to a Ta plate pierced
by a single 5-μm-diameter pinhole (green dotted circle). (d) Overview
of the experimental setup of soft x-ray MCD measurement. Both
the x-ray beam axis and magnetic field H were perpendicular to
the chiral helical axis (c axis; see the text). (e) Hysteresis curves of
element-specific magnetization for Cr MCr obtained by the soft x-ray
MCD measurements at T = 10 K. The MCD signal was observed
over only the areas marked with green dots in (a)–(c). (f) Hysteresis
curves of MCr after calibrating the demagnetization effect. The black
solid squares and purple curve represent bulk millimeter-sized crystals
from [24] and the mean-field (MF) theoretical results tracing the
minimum-energy state for an infinite system, respectively [5]. In both
(e) and (f), MCr is normalized to the saturated magnetization Ms.

to the sample surface in order to thread the beam into the
channel with a diameter of 5 μm, fabricated in the Ta substrate.
Indeed, as Fig. 2(d) shows, H was applied perpendicular to
the chiral helical axis (c axis). The energy of the x ray was
fixed at 576 eV, corresponding to L3 of Cr (see Fig. S2 [27]),
to obtain the element-specific magnetization for Cr MCr. The
demagnetization effect was calibrated as Heff = H − NdMCr,
where MCr was evaluated in units of emu/cm3 based on the
volume of the measured region in the MCD experiment and
previous results for a bulk single crystal [24,25]. In the present
transmittance mode measurement for specimens A, B, and C,
the specimen space exposed to measurement can be considered
to be a thin disk with a diameter of 5 μm and thickness of
0.1 μm. Thus, the demagnetization field coefficient Nd was
determined to be 1 for the very thin case in which H was
applied approximately perpendicular to the sample surface.
In the analysis, the same Nd was used for three specimens.
For reference, we have to consider another Nd for the wall
surrounding the measured part. The MCD signal was recorded
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using the helicity switching method at a frequency of 1 Hz. MCr

was measured by observing the averaged absorption intensities
between the positive and negative helicities. The incident and
transmitted x-ray beam intensities were recorded following a
total electron yield method and p-i-n type (PIN) photodiode
detection, respectively.

C. Three-dimensional mean-field theory

We analyzed a spin model for a monoaxial chiral helimagnet
on a three-dimensional (3D) cubic lattice using a MF method
[29]. Considering the cubic lattice as a set of layers, we labeled
each site on the cubic lattice by a dimensionless vector i

= i|| ẑ + i⊥, with the integer i|| specifying a layer and the
two-dimensional vector i⊥ = ix x̂ + iy ŷ with integers ix and
iy specifying a site in the layer. Here, x̂, ŷ, and ẑ denote the
unit vectors in the x, y, and z directions, respectively. The
Hamiltonian is given by

H = −J⊥∑
i

Si · (Si+x̂ + Si+ ŷ) − J ||∑
i

Si · Si+ ẑ

−D
∑

i

(Si × Si+ ẑ) · ẑ − H
∑

i

Si · x̂, (1)

where Si denotes a classical Heisenberg spin with the magni-
tude S = 3/2 at site i. The magnitudes of the D-M interaction
vector D and the ferromagnetic exchange interactions J || and
J⊥ are considered only for the nearest-neighboring spins. We
applied the external field (with strength H ) perpendicular to
the chiral helical axis. We set J⊥/J || = 8 and D/J || = 0.16
to model CrNb3S6, and we set the number of layers Nz =
4125, which corresponds to 5 μm in this material. In the MF
approximation, the system is mapped onto a single-spin model
expressed as

H = −
∑

i

Hmf
i|| · Si +

∑
i

Ci|| , (2)

with the effective field in the i||th layer

Hmf
i|| = 4J⊥ M i|| + J ||(M i||+1 + M i||−1

)
+D

(
M i||+1 − M i||−1

) × ẑ + H x̂ (3)

and the constant term Ci|| = (Hmf
i|| − H x̂) · M i||/2. Here,

M i|| = 〈Si 〉 =
[
S coth

(
βS Hmf

i||

) − 1

β Hmf
i||

]
Hmf

i||

|Hmf
i|| | , (4)

with β = 1/kBT represents the thermal average of the spin
moment in the i||th layer. We assumed that Ci|| , Hmf

i|| , and
M i|| are independent of the index i⊥, and we solved these
MF equations self-consistently using the following algorithm:
(i) For a set of parameters (J ||, J⊥, D, H , T ), prepare
initial conditions in the form M i|| = S(coski||,sinki||,0), with
k = 2πw/Nz for the soliton number w = 0,1,2, . . . ,105.
(ii) Calculate Hmf

i|| and M i|| for the i||th layer for each initial
state characterized by a soliton number w. In this work,
we impose a periodic boundary condition. (iii) Perform the
second step for all layers. Steps (ii) and (iii) constitute one
iteration. (iv) Perform 107 iterations. We then obtain a spin
configuration for a given set of parameters (J ||, J⊥, D, H ,
T ) for each initial state, and the physical properties such as

the magnetization M/S = �i|| M i||/(NzS) can be calculated
using this configuration for each w. Because of the periodic
boundary condition, w is conserved in steps (ii) through (iv).
(v) Change H with the other parameters fixed, and perform
steps (ii) through (iv) again. After performing this step for
several values of H , we obtain the magnetization curves for a
constant w.

D. Micromagnetic simulation

We performed a micromagnetic simulation that integrates
the time evolution of the Landau-Lifshitz-Gilbert equation,

∂ S
∂t

= −γ S × Heff + α

(
S × ∂ S

∂t

)
, (5)

where S is the local spin, γ is the gyromagnetic ratio, and
α is the Gilbert damping coefficient. Heff is the effective
magnetic field obtained by Heff = − ∂E

∂ S , where E is the
total energy of the spin system including the ferromagnetic
exchange coupling and the D-M interaction D. We apply
the fourth-order Runge-Kutta method to calculate the time
evolution of the Landau-Lifshitz-Gilbert equation using a two-
dimensional square lattice with the lattice constant a = 1 nm.
Magnetization curves were calculated for a system landscape
containing 500 × 20 unit cells. The magnetic field H was
applied perpendicular to the square lattice. The exchange
energy along the c axis J || was 29 K, and that in the in-plane
direction J⊥ was 232 K: The energy of D was 3 K. We
assume that the unit cell (1 nm3) includes 3μB. To obtain
the ground state, we prepared a random state and performed
the time evolution of the Landau-Lifshitz-Gilbert equation
with a large damping coefficient (α = 0.1). We introduce the
finite-temperature effect by applying a random magnetic field
h in which the variance proportional to the temperature is
as follows: 〈hμ(t)hν(t ′)〉 = 2αkBT

V MSγ
δμνδ(t − t ′), where α is the

Gilbert damping, V is the volume of the unit cell in the
simulation, MS is the saturation magnetization, and γ is
the gyromagnetic ratio [30]. The magnetization curve was
obtained by varying H (at a ratio of 10 Oe/ns).

III. RESULTS

A. X-ray magnetic circular dichroism

Figures 2(a)–2(c) present microprocessed CrNb3S6 spec-
imens A, B, and C. H was applied almost parallel to the
direction of x-ray propagation [28] and perpendicular to the
helical c axis, as seen in Fig. 2(d). Figure 2(e) shows the
H dependence of MCr for the three specimens; in Fig. 2(f),
the horizontal axis is converted into the effective field Heff

(= H − NdMCr), considering the demagnetization effect of
thin specimens. With the demagnetization-effect calibration,
the data for specimens A and B approach those for the bulk
crystals [the black solid squares in Fig. 2(f)], suggesting the
appropriateness of this calibration. The critical field Hc in the
forced-ferromagnetic state for specimen C is slightly higher
than those for A and B. The helimagnetic [Fig. 1(a)], CSL
[Fig. 1(b)], and forced-ferromagnetic [Fig. 1(c)] spin align-
ments appear for Heff = 0, 0 < Heff < Hc, and Heff > Hc,
respectively. In the following, we explain how the magneti-
zation curves are different depending on the geometry of the
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FIG. 3. Minor loop (ML) magnetization curves of specimen C of CrNb3S6 for ML-1 and ML-2. Magnetization profiles were obtained with
the soft x-ray MCD measurements at T = 10 K. (a) and (b) ML-1 starting from zero field. (c) and (d) ML-2 starting from above Hc. For
reference, the full loop and MF theory data, shown in Fig. 2(f), are also presented in (a)–(d). The original MCr vs H data corresponding to
(a)–(d) are shown in Fig. S5 [27]. (e) and (f) Hysteresis areas of ML-1 and ML-2 as a function of the return field HRE evaluated by the levels
of (e) Heff and (f) MCr/Ms. Two hysteresis thresholds, H ∗ and H ∗∗, appear for the H -increasing and H -decreasing processes, respectively. In
(a)–(d), reversible and irreversible regions are hatched with orange and light blue, respectively.

specimens; these magnetization curves provide useful insight
that aids the control of the TMS number.

Specimen A [Fig. 2(a)] has high walls with thicknesses of
approximately 1 μm at both edges perpendicular to and on
one side along the c axis. With increasing Heff , this specimen
exhibits a change in the slope of MCr at approximately 1.7 kOe,
followed by an almost linear dependence on Heff , as shown

in Fig. 2(f). This behavior arises from the decrease in the
TMS number and is consistent with the MF picture [the
purple curve in Fig. 2(f)] where the minimum-energy states are
traced continuously [5]. At the critical field of Hc = 2 kOe,
the saturated forced-ferromagnetic state appears. In the H -
decreasing process, MCr exhibits a prominent reduction at
Heff = 1.0 kOe and subsequently returns to the original curve.
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The fall of MCr corresponds to approximately half of the
saturation magnetization Ms, suggesting that approximately
half of the total TMSs (approximately 50 TMSs) penetrate
simultaneously at this point. The behavior of a sharp jump has
also been observed in the magnetoresistance measurements for
a specimen with similar geometry [16].

Specimen B [Fig. 2(b)] has a geometry that is similar to
that of specimen A, with its surrounding walls at one end of
the c axis and both sides parallel to c axis. The large MCr jump
occurs at a smaller field strength in the H -decreasing process,
whereas the shape of the MCr curve resembles that of specimen
A in most areas.

Specimen C [Fig. 2(c)] has a uniform thickness with no
surrounding walls. Figure 2(f) shows the MCr behavior of
specimen C, indicated by red solid dots. In the H -increasing
process, the MCr curve appears to be temporarily saturated
toward approximately 2 kOe and subsequently shows the rapid
MCr growth observed in specimens A and B. An upward convex
curvature is seen below approximately 2 kOe, which is distinct
from the behavior observed in specimens A and B, as well as the
downward convex curvature based on the MF theory [5]. The
monotonic decrease of MCr without a prominent fall in the H -
decreasing process is also in contrast to specimens A and B and
reminiscent of that given by the Langevin function (see Fig. S3
[27]). The disappearance of the signal drop in the H -decreasing
process is also found in the magnetoresistance measurements
in the specimens with dimensions similar to those of specimen
C (see Fig. S4 [27]). These two significant findings strongly
suggest that there are unexpected magnetization profiles along
which the TMS number changes between the maximum value
and zero.

To identify all possible profiles for specimen C, the minor
loops (MLs) of MCr were examined in various H routes,
as shown in Figs. 3(a)–3(d) (see also Fig. S5 [27]). The
result of the full loop shown in Figs. 3(a)–3(d) was obtained
in a new run different from that for Figs. 2(e) and 2(f) to
confirm the reproducibility of the characteristic behavior. The
Heff regions hatched with orange color in Figs. 3(a) and
3(c) exhibit reversible magnetization and demagnetization,
respectively.

In the first type of ML (called ML-1), MCr is measured
while increasing H from zero to the returning field HRE and
subsequently reducing to zero field. HRE is described as the
field value before calibrating for the demagnetization effect.
With HRE set at less than a certain field marked by H ∗, no
hysteresis is observed, as shown in Fig. 3(a). Once HRE exceeds
H ∗ [the Heff region hatched with light blue in Fig. 3(b)],
MCr does not return along the initial curve. With increasing
HRE, new profiles occur in the hysteresis region, as shown in
Fig. 3(b).

When the MLs are taken by reducing H from above Hc

and reversing the sweep direction at HRE (ML-2), the onset of
HRE below which the hysteresis appears is also observed [the
Heff region hatched with light blue in Fig. 3(d)]. As shown in
Figs. 3(c) and 3(d), the magnetization profile deviates from the
original curve when HRE decreases to below 0.4 kOe, defined
as H ∗∗. The area of ML obtained with HRE very close to zero
field [e.g., at 0.14 kOe in the H level, represented by the purple
solid triangles in Fig. 3(d)] is approximately half of the area of
the full hysteresis.
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FIG. 4. Minor-loop (ML) magnetization curves of specimen C of
CrNb3S6 for ML-3 and ML-4. Magnetization profiles were obtained
with the soft x-ray MCD measurements. (a) ML-3 at T = 36 K and
(b) ML-4 at T = 10 K. The original MCr vs H data are shown in
Fig. S6 [27]. Here, the data after the field calibration are shown.
The ML-3 process is H = 0.00 → 2.53 → 0.90 → 4.70 kOe and
H = 0.00 → 2.43 → 0.60 → 4.70 kOe; the ML-4 process is H =
4.00 → 0.21 → 2.40 → 0.00 kOe. The reversible Heff regions are
hatched with orange.

To identify the critical point for the appearance of the ML
hysteresis, the hysteresis area obtained by integrating MCr

with respect to H is plotted as a function of HRE and the
corresponding value of MCr at HRE, as shown in Figs. 3(e) and
3(f), respectively. The figures clearly show the coincidence
of MCr values at H ∗ for ML-1 and H ∗∗ for ML-2, which
reveal that the ML hysteresis appears when the magnetization
reaches approximately 60% of Ms in both H -increasing and
H -decreasing processes. Furthermore, other types of MLs with
two HRE points (e.g., see ML-3 and ML-4 in Fig. 4) indicate
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FIG. 5. (a) Theoretical calculation of the magnetization curve with fixed soliton numbers by finite-temperature three-dimensional mean-field
theory under a periodic boundary condition. The soliton number w was fixed at values between 0 and 105. Points 1–5 have the same TMS
number of w = 50, and for point 6, corresponding to the forced-ferromagnetic state, w = 0. (b) Spatial distributions of magnetic moments
viewed from the direction perpendicular to the chiral helical axis are displayed for each point. (c) Spatial distributions for each point are
displayed in three-dimensional perspectives.

that, when the H sweep direction reverses at any H value
between the critical values of H ∗ and H ∗∗, the MCr curve traces
back to the previous profile in the hysteresis region. Thus,
such robust profiles drawn within the hysteresis region may
reflect the individual paths characterized by the TMS number.
ML-1 and ML-3 can occur in specimens A and B, whereas
ML-2 and ML-4 are characteristic of only specimen C. In order
to understand these experimental findings, they are compared
with theoretical calculations below.

IV. DISCUSSION

A. Three-dimensional mean-field theory

To interpret the MCr-Heff curves for all the specimens, we
perform numerical analysis. Figure 5(a) shows a series of
magnetization curves for the CSL formation with the TMS
number w fixed at different values between 0 and 105. The
same data are also displayed in Figs. 6(a) and 6(b) for compar-
ison with experimental data. The calculations were obtained
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FIG. 6. Explanation of MCr for specimens A, B, and C with the
help of the 3D-MF theory. In (a), guide curves and lines are shown
for both specimens A (A0 → A1 → A2 → A0) and B (B0 →
B1 → B2 → B0). The arrows in (a) indicate the directions of change
in H . In (b), the full loop and four minor loops (ML-1, ML-2, ML-
3, ML-4) for specimen C are indicated by solid and dashed curves,
respectively. In (b), some points are labeled as Cn (n = 0–11), and
the full and minor loops are expressed as follows: full loop, point
C0 → C1 → C2 → C6 → C7 → C0; ML-1, C0 → C1 → C0

or C0 → C2 → C3 → C0; ML-2, C6 → C7 → C6 or C6 →
C8 → C5 → C6; ML-3, C0 → C2 → C4 → C10 → C4 → C6;
and ML-4, C6 → C8 → C9 → C11 → C9 → C0. Both ML-1 and
ML-2 have one HRE point, whereas both ML-3 and ML-4 have two
HRE points. In both (a) and (b), the magnetization M in the vertical
axis is normalized by the spin quantum number S = 3/2, and the
magnetic field H is normalized by a multiple of the ferromagnetic
exchange interaction on a plane perpendicular to the chiral helical
axis J || and S.

by applying the finite-temperature 3D-MF theory under a
periodic boundary condition [29], together with the results of
the aforementioned MF theory represented by blue solid dots
[5]. The maximum w is given in consideration of the diameter
of the pinhole at which the MCD signals were measured. Each
magnetization curve of the 3D-MF theory exhibits upward
convexity similar to the Langevin function, in contrast to the

downward convexity produced by the energy minimum state
in the MF theory. Figures 5(b) and 5(c) present changes in
MCr with a constant w (=50) by using one-dimensional and
three-dimensional perspectives, respectively, demonstrating
how the magnetization can change under the condition of a
fixed w.

By using Fig. 5(a), we explain a series of MCD data. First,
we schematically draw the lines labeled A and B based on
Fig. 6(a). In the H -increasing process, successive transitions
occur that connect the minimum-energy states. During the
H -decreasing process, the supercooled forced-ferromagnetic
state is formed, following which the magnetization jumps and
a monotonic change occurs. Thus, the above behavior explains
the MCr data in specimens A and B. The difference in the H

onset for the large MCr jump indicates the role of the walls in
specimens A and B in inducing a potential barrier for TMSs to
penetrate the supercooled forced-ferromagnetic state.

Next, in Fig. 6(b), the following scenario may explain
the MCr data in specimen C. At the very beginning of the
H -increasing process, some portions of TMS are dissipated
from the specimen because of small activation energies be-
tween the TMS states with different TMS numbers at quite
a small Heff . The MCr then grows along the profile with the
TMS number fixed until Heff � H ∗, producing the upward
convexity (corresponding to ML-1). For H ∗ � Heff � Hc, the
MCr rapidly changes via the successive transition between the
minimum-energy states. When measuring the MLs in this re-
gion (under the condition that HRE is above H ∗), the hysteresis
appears because the TMS number is already altered and can be
maintained until some H points. In the H -decreasing process,
the upward convexity of the MCr is obtained by assuming a
constant TMS number. All ML types can be explained because
the TMS number is fixed for Heff � H ∗ and H ∗∗ � Heff .

B. Micromagnetic simulation

To confirm the conservation of the TMS number in the re-
versible region, we perform micromagnetic simulations using
the Landau-Lifshitz-Gilbert equation in a flat, thin system mod-
eling specimen C, which is the system landscape containing
500 × 20 unit cells, as schematized in Fig. 7(a).

Figure 7(b) shows the simulated MLs with HRE equal to
1.0, 2.6, and 4.0 kOe. When H changes from 0 to 4.0 to
0 kOe (HRE = 4.0 kOe), the normalized magnetization along
the direction of H , M , exhibits an upward convex behavior
for H < 2.3 kOe. Therefore, 2.3 kOe was considered to be
the threshold for the H -increasing process H ∗. After this
threshold, M prominently increases, showing saturation at
H > Hc (=2.7 kOe). In theH -decreasing process, theM at sat-
uration is maintained until approximately 0.6 kOe, which was
therefore considered to be the threshold for the H -decreasing
process H ∗∗. Beyond this threshold, M shows an incremental
decrease, eventually reverting to zero. The resultant hysteresis
of M is similar to that observed for specimen C. In the case
of HRE = 1.0 kOe (labeled B), no hysteresis feature was
observed. For HRE = 2.6 kOe, a minor loop appears, and in
the H -decreasing process, M tends to maintain the value at
HRE, exhibiting a prominent decrease at approximately 0.6 kOe
(H ∗∗). This behavior is consistent with the profile of ML-1 for
specimen C.
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FIG. 7. Magnetization curve calculated by time evolution of the
Landau-Lifshitz-Gilbert equation. (a) A microprocessed simulation
was performed for the system landscape containing 500 × 20 unit
cells. The magnetic field H was applied perpendicular to the chiral
helical axis. (b) Dependence of the magnetization M on H for HRE

values of 1.0, 2.6, and 4.0 kOe. (c) The spin mapping shown at repre-
sentative field points identified as A–J in (b) (A–F for HRE = 4.0 kOe
and A–C and G–J for HRE = 2.6 kOe), where red and blue rep-
resent the positive and negative moments along H , respectively.
(d) and (e) Images of the soliton’s release from and insertion into
the chiral soliton lattice state presented for the H -increasing and
H -decreasing processes, respectively. The magnetic moments are
colored according to the coloring in (c).

Snapshots of the magnetization at each H are shown
in Fig. 7(c). As shown by the magnetization mapping in
Fig. 7(c), the solitons assembled in A–E exhibit a regular
arrangement, whereas the solitons assembled in F–J do not
have a regular form. In an intuitive model, M is assumed to
be M = Ms(1 − δw/wtotal), where wtotal and δ are the total
w and the spatial distributions of the magnetic moments in
the solitons, respectively. There is a difference in the spin
alignment on both sides along the c axis between points A and
B. Both the B and C points have the same w, although the M

of point B is smaller than that of C because the territory of the
nonferromagnetic configuration at B is larger than that for C. A

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 8. Annihilation of TMSs in a flat, thin system model-
ing specimen C. The present system is schematized in Fig. 7(a).
(a)–(f) Snapshots of the magnetization configuration (200 nm < X <

300 nm) as the number of magnetic solitons drastically changes in the
hysteresis curve (as shown in Fig. 7). A series of snapshots shows how
the soliton is released from the sample above H ∗ in the H -increasing
process [from (a) to (f)].

similar phenomenon occurs between I and J. In Figs. 7(d) and
7(e), images of the soliton’s release from and insertion into the
chiral soliton lattice state are presented for the H -increasing
and H -decreasing processes, respectively. Thus, as shown in
Fig. 7(c) for points A–C, although the magnetization increases
on increasing H , the soliton number is preserved below H ∗.
When H > H ∗, the solitons disappear [Fig. 7(c), point G].
This soliton disappearance occurs randomly because of the
magnetization fluctuation at a finite temperature. This explains
the nonuniform spatial density of the soliton in Fig. 7(c) for
points G–J.

Figure 8 shows the simulation of annihilation of
TMSs presented in Fig. 7(d): Because we introduce the
finite-temperature effect by using the random magnetic field,
one soliton becomes thinner stochastically, as shown for H =
2600 Oe. By increasing the magnetic field to, for example,
H = 2603 Oe, one soliton is released from the one (upper)
edge and becomes shorter at another (lower) edge, as illustrated
in Fig. 7(d). Thus, the soliton is released from the direction
perpendicular to the c axis.

Figure 9 shows a simulation of the creation of TMSs
presented in Fig. 7(e). By decreasing H , the magnetization
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FIG. 9. Creation of TMSs in a flat, thin system modeling
specimen C. The present system is schematized in Fig. 7(a).
(a)–(f) show how the soliton penetrates into the sample below H ∗∗

in the H -decreasing process [from (a) to (f)]. The created soliton
propagates to the center of the sample, while another soliton is created
at the edge (H = 580 Oe).

can easily flip at the edge of the c axis. The created soliton
propagates to the center of the sample, while another soliton
is created at the edge (H = 580 Oe). In contrast to the
soliton disappearance process, in the H -decreasing process,
the soliton penetrates from the edge of the c axis. Figure 7(c),
point F, also shows that the soliton is created at the edge of the
specimen and propagates to the center.

Thus, the micromagnetic simulation effectively describes
the hysteresis curve of specimen C obtained by MCD

experiments; this hysteresis curve does not change qualita-
tively on considering the dipole-dipole interaction. From this
soliton dynamics, the role of the high wall in specimens
A and B is clear. The connecting region between the high
wall and thin area easily changes the magnetization direction
because of the anisotropic effect, creating solitons even in high
H . Therefore, the abrupt drop in magnetization appears in
specimens A and B in the H -decreasing process. A similar
surface effect is discussed in relation to the magnetic-flux
penetration in type-II superconductors [31–33]. From a phe-
nomenological viewpoint, it is similar to the stripe of out-of-
plane magnetization in thin ferromagnetic films in the vicinity
of the reorientation phase transition [34,35]. However, the
above magnetization stripe demonstrates the magnetic domain
physics in the micrometer scale. In the present specimens
A and B, the TEM and small-angle scattering experiments
demonstrate that the magnetic solitonic texture is controllable
by magnetic field [6,15,16]. The CSL formation in specimens
A and B originates from a completely different mechanism
of an out-of-plane magnetization stripe in thin ferromagnetic
films.

V. CONCLUSION

We found that the geometry of the environment surrounding
the microprocessed CrNb3S6 crystals essentially affects the
TMS formation. By designing the microcrystal shapes, we
demonstrated how to preserve and change the TMS number
over a wide range of magnetic fields. This effect was confirmed
through the experimentally observed magnetization hysteresis
and was supported by MF calculations and micromagnetic
simulations. The results reported here indicate that the fab-
ricated microcrystals of the monoaxial chiral helimagnet have
the functionality of a TMS valve.
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