269 research outputs found

    X-Ray Grating Observations of Recurrent Nova T Pyxidis During The 2011 Outburst

    Full text link
    The recurrent nova T Pyx was observed with the X-ray gratings of Chandra and XMM-Newton, 210 and 235 days, respectively, after the discovery of the 2011 April 14 outburst. The X-ray spectra show prominent emission lines of C, N, and O, with broadening corresponding to a full width at half maximum of ~2000-3000 km/s, and line ratios consistent with high-density plasma in collisional ionization equilibrium. On day 210 we also measured soft X-ray continuum emission that appears to be consistent with a white dwarf (WD) atmosphere at a temperature ~420,000 K, partially obscured by anisotropic, optically thick ejecta. The X-ray continuum emission is modulated with the photometric and spectroscopic period observed in quiescence. The continuum at day 235 indicated a WD atmosphere at a consistent effective temperature of 25 days earlier, but with a lower flux. The effective temperature indicates a mass of ~1 solar mass. The conclusion of partial WD obscuration is supported by the complex geometry of non-spherically-symmetric ejecta confirmed in recent optical spectra obtained with the Southern African Large Telescope (SALT) in November and December of 2012. These spectra exhibited prominent [O III] nebular lines with velocity structures typical of bipolar ejecta.Comment: Accepted to ApJ 2013 October 23, 14 pages, 9 figures, 3 table

    A Multi-Survey Approach to White Dwarf Discovery

    Full text link
    By selecting astrometric and photometric data from the Sloan Digital Sky Survey (SDSS), the L{\'e}pine & Shara Proper Motion North Catalog (LSPM-North), the Two Micron All Sky Survey (2MASS), and the USNO-B1.0 catalog, we use a succession of methods to isolate white dwarf candidates for follow-up spectroscopy. Our methods include: reduced proper motion diagram cuts, color cuts, and atmospheric model adherence. We present spectroscopy of 26 white dwarfs obtained from the CTIO 4m and APO 3.5m telescopes. Additionally, we confirm 28 white dwarfs with spectra available in the SDSS DR7 database but unpublished elsewhere, presenting a total of 54 WDs. We label one of these as a recovered WD while the remaining 53 are new discoveries. We determine physical parameters and estimate distances based on atmospheric model analyses. Three new white dwarfs are modeled to lie within 25 pc. Two additional white dwarfs are confirmed to be metal-polluted (DAZ). Follow-up time series photometry confirms another object to be a pulsating ZZ Ceti white dwarf.Comment: 9 figures, 3 Tables; http://stacks.iop.org/1538-3881/143/10

    Pulsed Accretion in the T Tauri Binary TWA 3A

    Get PDF
    TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A's time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (~20 observations per orbit) for ~15 orbital periods. From U-band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolve over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ~4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A's average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.Comment: 6 pages, 4 figure

    Orbital Parameter Determination for Wide Stellar Binary Systems in the Age of Gaia

    Full text link
    The orbits of binary stars and planets, particularly eccentricities and inclinations, encode the angular momentum within these systems. Within stellar multiple systems, the magnitude and (mis)alignment of angular momentum vectors among stars, disks, and planets probes the complex dynamical processes guiding their formation and evolution. The accuracy of the \textit{Gaia} catalog can be exploited to enable comparison of binary orbits with known planet or disk inclinations without costly long-term astrometric campaigns. We show that \textit{Gaia} astrometry can place meaningful limits on orbital elements in cases with reliable astrometry, and discuss metrics for assessing the reliability of \textit{Gaia} DR2 solutions for orbit fitting. We demonstrate our method by determining orbital elements for three systems (DS Tuc AB, GK/GI Tau, and Kepler-25/KOI-1803) using \textit{Gaia} astrometry alone. We show that DS Tuc AB's orbit is nearly aligned with the orbit of DS Tuc Ab, GK/GI Tau's orbit might be misaligned with their respective protoplanetary disks, and the Kepler-25/KOI-1803 orbit is not aligned with either component's transiting planetary system. We also demonstrate cases where \textit{Gaia} astrometry alone fails to provide useful constraints on orbital elements. To enable broader application of this technique, we introduce the python tool \texttt{lofti\_gaiaDR2} to allow users to easily determine orbital element posteriors.Comment: 18 pages, 10 figures, accepted for publication in Ap

    Optical observations of "hot" novae returning to quiescence

    Full text link
    We have monitored the return to quiescence of novae previously observed in outburst as supersoft X-ray sources, with optical photometry of the intermediate polar (IP) V4743 Sgr and candidate IP V2491 Cyg, and optical spectroscopy of these two and seven other systems. Our sample includes classical and recurrent novae, short period (few hours), intermediate period (1-2 days) and long period (symbiotic) binaries. The light curves of V4743 Sgr and V2491 Cyg present clear periodic modulations. For V4743 Sgr, the modulation occurs with the beat of the rotational and orbital periods. If the period measured for V2491 Cyg is also the beat of these two periods, the orbital one should be almost 17 hours. The recurrent nova T Pyx already shows fragmentation of the nebular shell less than 3 years after the outburst. While this nova still had strong [OIII] at this post-outburst epoch, these lines had already faded after 3 to 7 years in all the others. We did not find any difference in the ratio of equivalent widths of high ionization/excitation lines to that of the Hbeta line in novae with short and long orbital period, indicating that irradiation does not trigger high mass transfer rate from secondaries with small orbital separation. An important difference between the spectra of RS Oph and V3890 Sgr and those of many symbiotic persistent supersoft sources is the absence of forbidden coronal lines. With the X-rays turn-off, we interpret this as an indication that mass transfer in symbiotics recurrent novae is intermittent.Comment: In press in Monthly Notices of the Royal Astronomical Societ

    Testing Asteroseismic Scaling Relations using Eclipsing Binaries in Star Clusters and the Field

    Get PDF
    The accuracy of stellar masses and radii determined from asteroseismology is not known! We examine this issue for giant stars by comparing classical measurements of detached eclipsing binary systems (dEBs) with asteroseismic measurements from the Kepler mission. For star clusters, we extrapolate measurements of dEBs in the turn-off region to the red giant branch and the red clump where we investigate the giants as an ensemble. For the field stars, we measure dEBs with an oscillating giant component. These measurements allow a comparison of masses and radii calculated from a classical eclipsing binary analysis to those calculated from asteroseismic scaling relations and/or other asteroseismic methods. Our first results indicate small but significant systematic differences between the classical and asteroseismic measurements. In this contribution we show our latest results and summarize the current status and future plans. We also stress the importance of realizing that for giant stars mass cannot always be translated to age, since an unknown fraction of these evolved through a blue straggler phase with mass transfer in a binary system. Rough estimates of how many such stars to expect are given based on our findings in the open clusters NGC6819 and NGC6791.Comment: To appear in Astronomische Nachrichten, special issue "Reconstruction the Milky Way's History: Spectroscopic surveys, Asteroseismology and Chemo-dynamical models", Guest Editors C. Chiappini, J. Montalb\'an, and M. Steffen, AN 2016 (in press)
    corecore