366 research outputs found
Basic biology and small-scale rearing of Celatoria compressa (Diptera: Tachinidae), a parasitoid of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae)
The tachinid Celatoria compressa Wulp has been evaluated as a candidate biological control agent for the western corn rootworm, Diabrotica virgifera virgifera LeConte, in Europe, where it is an invasive alien pest of maize. Special emphasis has been placed on understanding aspects of the parasitoid basic biology and on developing a rearing technique for a small-scale production of C. compressa puparia. The age of C. compressa adults was found to be the most crucial factor in achieving mating. Only newly emerged, 1-h-old females, mated successfully with 2- to 5-day-old males, achieving a success rate of 74%. After mating, a prelarviposition period of 4 days occurred. The 5-day-old C. compressa females inserted their eggs containing fully-developed first instars directly into adults of D. v. virgifera. Total larval and pupal developmental time, including a pre-larviposition period of 4 days, was 29 days under quarantine laboratory conditions (25°C daytime, 15°C at night, L:D 14:10, 50% ± 10% r.h). Females of C. compressa were capable of producing on average 30 puparia throughout a female's mean larviposition period of 15 days. A large number of host attacks by C. compressa were unsuccessful, resulting in a mean larviposition success rate of 24% per female. Parasitoid females appear to have difficulties inserting the egg through the intersegmental sutures or membranes around leg openings of the host adults. Although the small-scale rearing technique of C. compressa presented is both time and labour intensive, C. compressa has been reared successfully for at least 20 successive generations without shifting the 1 male: 1 female sex ratio using a non-diapause strain of D. v. virgifer
European populations of Diabrotica virgifera virgifera are resistant to aldrin, but not to methyl-parathion
The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of cultivated corn in North America and has recently begun to invade Europe. In addition to crop rotation, chemical control is an important option for D. v. virgifera management. However, resistance to chemical insecticides has evolved repeatedly in the USA. In Europe, chemical control strategies have yet to be harmonized and no surveys of insecticide resistance have been carried out. We investigated the resistance to methyl-parathion and aldrin of samples from nine D. v. virgifera field populations originating from two European outbreaks thought to have originated from two independent introductions from North America. Diagnostic concentration bioassays revealed that all nine D. v. virgifera field populations were resistant to aldrin but susceptible to methyl-parathion. Aldrin resistance was probably introduced independently, at least twice, from North America into Europe, as there is no evident selection pressure to account for an increase of frequency of aldrin resistance in each of the invasive outbreaks in Europe. Our results suggest that organophosphates, such as methyl-parathion, may still provide effective control of both larval and adult D. v. virgifera in the European invasive outbreaks studied
Quantifying inter-field movements of the western corn rootworm (Diabrotica virgifera virgifera LeConte) — A Central European field study
Dispersal plays a key role in the adaptation of species. It has been suggested that even in a stable and predictable environment, it is essential for any given population to “send” a certain portion of its offspring to disperse (referred as evolutionary stable dispersal rate). Although the literature on the flight behaviour of one of the major maize pests, the western corn rootworm, is rich, relatively little is known about its inter-field movements under field conditions. In the present study, inter-field movement of adult beetles was observed in Central-Europe under quasi-isolated conditions of infested continuous and un-infested first year maize fields, and related to candidate predictor variables. Percent of immigrants (net percent of adults within a given population leaving their natal maize field and arriving in first-year maize) varied greatly across years and locations (0.4–93.3%, mean = 38.7%). Results of the study provided field evidence of the assumption that western corn rootworm performs density dependent inter-field movement. Independent from pest densities, it appeared that about 1/3 of an adult beetle population always leaves its natal maize field, which likely allows the species to find new food sources and oviposition sites. The distance between maize fields and the phenological status of maize influenced inter-field movements but at a much less extent than it could have been expected from laboratory research findings
Screening of entomopathogenic nematodes for virulence against the invasive western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) in Europe
Entomopathogenic nematode species available in Europe were screened for their efficacy against both the root-feeding larvae and silk-feeding adults of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Laboratory screening tests were aimed at the selection of candidate biological control agents for the management of this invasive alien pest in Europe. Steinernema glaseri, S. arenarium, S. abassi, S. bicornutum, S. feltiae, S. kraussei, S. carpocapsae and Heterorhabditis bacteriophora were studied to determine their virulence against third instar larvae and adults of D. v. virgifera in small-volume arenas (using nematode concentrations of 0.5, 0.8, 7.9 and 15.9 infective juveniles cm-2). All nematode species were able to invade and propagate in D. v. virgifera larvae, but adults were rarely infected. At concentrations of 7.9 and 15.9 cm-2, S. glaseri, S. arenarium, S. abassi and H. bacteriophora caused the highest larval mortality of up to 77%. Steinernema bicornutum, S. abassi, S. carpocapsae and H. bacteriophora appeared to have a high propagation level, producing 5970±779, 5595±811, 5341±1177 and 4039±1025 infective juveniles per larva, respectively. Steinernema glaseri, S. arenarium, S. feltiae, S. kraussei and H. bacteriophora were further screened at a concentration of 16.7 nematodes cm-2 against third instar larvae in medium-volume arenas (sand-filled trays with maize plants). Heterorhabditis bacteriophora, S. arenarium and S. feltiae caused the highest larval mortality with 77±16.6%, 67±3.5%, and 57±17.1%, respectively. In a next step, criteria for rating the entomopathogenic nematode species were applied based on results obtained for virulence and propagation, and for current production costs and availability in Europe. These criteria were then rated to determine the potential of the nematodes for further field testing. Results showed the highest potential in H. bacteriophora, followed by S. arenarium and S. feltiae, for further testing as candidate biological control agent
Phenotypic trait changes in laboratory - reared colonies of the maize herbivore, Diabrotica virgifera virgifera
The North American and European maize pest Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) was used to assess whether conditions of the natal field, subsequent laboratory rearing, or genetic population origin affect phenotypic traits of fitness, activity, or morphometrics. Standardized laboratory bioassays with large sample sizes revealed that none of the 16 tested traits, except crawling behaviours, appeared consistently stable across all seven tested colonies. Environmental conditions in the natal field of the F 0 generation affected trait averages of the subsequently reared F 1 generation in laboratory in ca. 47% of cases, and trait variability in 67% of cases. This was apparent for fitness and morphometrics, but less obvious for activity traits. Early generation laboratory rearing affected trait averages in ca. 56% of cases: morphometrics changed; fecundity and egg survival increased from F 1 to F 2. Trait variability increased or decreased in 38% of cases. Laboratory rearing for over more than 190 generations affected the trait averages in 60% of cases, reflected by decreases in flight activity and increases in body size, weight, and fecundity to some extent. It had little effect on trait variability, especially so for morphometric variability. The genetic population origin affected average levels of 55% and variability of 63% of phenotypic traits. A comparison among D. v. virgifera studies might be difficult if they use different populations or laboratory colonies. It is advised to consider possible effects of original field conditions, laboratory rearing, and population genetics when planning comparative studies targeting fitness, activity, or morphometric questions regarding Diabrotica specie
- …