145 research outputs found
Drop impact upon micro- and nanostructured superhydrophobic surfaces
We experimentally investigate drop impact dynamics onto different
superhydrophobic surfaces, consisting of regular polymeric micropatterns and
rough carbon nanofibers, with similar static contact angles. The main control
parameters are the Weber number \We and the roughness of the surface. At small
\We, i.e. small impact velocity, the impact evolutions are similar for both
types of substrates, exhibiting Fakir state, complete bouncing, partial
rebouncing, trapping of an air bubble, jetting, and sticky vibrating water
balls. At large \We, splashing impacts emerge forming several satellite
droplets, which are more pronounced for the multiscale rough carbon nanofiber
jungles. The results imply that the multiscale surface roughness at nanoscale
plays a minor role in the impact events for small \We \apprle 120 but an
important one for large \We \apprge 120. Finally, we find the effect of
ambient air pressure to be negligible in the explored parameter regime \We
\apprle 150Comment: 8 pages, 7 figure
UV-induced ligand exchange in MHC class I protein crystals
High-throughput structure determination of proteinâligand complexes is central in drug development and structural proteomics. To facilitate such high-throughput structure determination we designed an induced replacement strategy. Crystals of a protein complex bound to a photosensitive ligand are exposed to UV light, inducing the departure of the bound ligand, allowing a new ligand to soak in. We exemplify the approach for a class of protein complexes that is especially recalcitrant to high-throughput strategies: the MHC class I proteins. We developed a UV-sensitive, âconditionalâ, peptide ligand whose UV-induced cleavage in the crystals leads to the exchange of the low-affinity lytic fragments for full-length peptides introduced in the crystallant solution. This âin crystalloâ exchange is monitored by the loss of seleno-methionine anomalous diffraction signal of the conditional peptide compared to the signal of labeled MHC ÎČ2m subunit. This method has the potential to facilitate high-throughput crystallography in various protein families
Class I major histocompatibility complexes loaded by a periodate trigger
Class I major histocompatibility complexes (MHCs) present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. The unstable nature of unliganded MHC necessitates the production of recombinant class I complexes through in vitro refolding reactions in the presence of an added excess of peptides. This strategy is not amenable to high-throughput production of vast collections of class I complexes. To address this issue, we recently designed photocaged MHC ligands that can be cleaved by a UV light trigger in the MHC bound state under conditions that do not affect the integrity of the MHC structure. The results obtained with photocaged MHC ligands demonstrate that conditional MHC ligands can form a generally applicable concept for the creation of defined peptideâMHCs. However, the use of UV exposure to mediate ligand exchange is unsuited for a number of applications, due to the lack of UV penetration through cell culture systems and due to the transfer of heat upon UV irradiation, which can induce evaporation. To overcome these limitations, here, we provide proof-of-concept for the generation of defined peptideâMHCs by chemical trigger-induced ligand exchange. The crystal structure of the MHC with the novel chemosensitive ligand showcases that the ligand occupies the expected binding site, in a conformation where the hydroxyl groups should be reactive to periodate. We proceed to validate this technology by producing peptideâMHCs that can be used for T cell detection. The methodology that we describe here should allow loading of MHCs with defined peptides in cell culture devices, thereby permitting antigen-specific T cell expansion and purification for cell therapy. In addition, this technology will be useful to develop miniaturized assay systems for performing high-throughput screens for natural and unnatural MHC ligands
Single-cell analysis of regions of interest (SCARI) using a photosensitive tag
The functional activity and differentiation potential of cells are determined by their interactions with surrounding cells. Approaches that allow unbiased characterization of cell states while at the same time providing spatial information are of major value to assess this environmental influence. However, most current techniques are hampered by a tradeoff between spatial resolution and cell profiling depth. Here, we develop a photocage-based technology that allows isolation and in-depth analysis of live cells from regions of interest in complex ex vivo systems, including primary human tissues. The use of a highly sensitive 4-nitrophenyl(benzofuran) cage coupled to a set of nanobodies allows high-resolution photo-uncaging of different cell types in areas of interest. Single-cell RNA-sequencing of spatially defined CD8+ T cells is used to exemplify the feasibility of identifying location-dependent cell states. The technology described here provides a valuable tool for the analysis of spatially defined cells in diverse biological systems, including clinical samples.ERC Cog KineTic grant 865175Bio-organic Synthesi
- âŠ