We experimentally investigate drop impact dynamics onto different
superhydrophobic surfaces, consisting of regular polymeric micropatterns and
rough carbon nanofibers, with similar static contact angles. The main control
parameters are the Weber number \We and the roughness of the surface. At small
\We, i.e. small impact velocity, the impact evolutions are similar for both
types of substrates, exhibiting Fakir state, complete bouncing, partial
rebouncing, trapping of an air bubble, jetting, and sticky vibrating water
balls. At large \We, splashing impacts emerge forming several satellite
droplets, which are more pronounced for the multiscale rough carbon nanofiber
jungles. The results imply that the multiscale surface roughness at nanoscale
plays a minor role in the impact events for small \We \apprle 120 but an
important one for large \We \apprge 120. Finally, we find the effect of
ambient air pressure to be negligible in the explored parameter regime \We
\apprle 150Comment: 8 pages, 7 figure