140 research outputs found

    PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database

    Get PDF
    BACKGROUND: Equally important and challenging as genome annotation, is the subsequent classification of predicted genes into their respective pathways. The Kyoto Encyclopedia of Genes and Genomes (KEGG) represents a database consisting of known genes and their respective biochemical functionalities. Although accessible online, analyses of multiple genes are time consuming and are not suitable for analyzing data sets that are proprietary. RESULTS: Presented here is a new software solution that utilizes the KEGG online database for pathway mapping of partial and whole prokaryotic genomes. PathwayVoyager retrieves user-defined subsets of the KEGG database and stores the data as local, blast-formatted databases. Previously selected datasets can be re-used, reducing run-time significantly. Whole or partial genomes can be automatically analyzed using NCBI's BlastP algorithm and ORFs with similarities below the user-defined threshold will be marked on pathway maps. Multiple gene hits are sorted by similarity. Since no sequence information is transmitted over the Internet, PathwayVoyager is an ideal solution for pathway mapping and reconstruction of confidential DNA sequence data. CONCLUSION: PathwayVoyager represents an alternative approach to many already existing, more complex pathway reconstructions software solutions. This software does not require any dedicated hardware or software and is flexible and straightforward to use. It is ideally suited for environments where analyses on variable datasets are desired

    The S-layer Associated Serine Protease Homolog PrtX Impacts Cell Surface-Mediated Microbe-Host Interactions of Lactobacillus acidophilus NCFM

    Get PDF
    Health-promoting aspects attributed to probiotic microorganisms, including adhesion to intestinal epithelia and modulation of the host mucosal immune system, are mediated by proteins found on the bacterial cell surface. Notably, certain probiotic and commensal bacteria contain a surface (S-) layer as the outermost stratum of the cell wall. S-layers are non-covalently bound semi-porous, crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (SLPs). Recent evidence has shown that multiple proteins are non-covalently co-localized within the S-layer, designated S-layer associated proteins (SLAPs). In Lactobacillus acidophilus NCFM, SLP and SLAPs have been implicated in both mucosal immunomodulation and adhesion to the host intestinal epithelium. In this study, a S-layer associated serine protease homolog, PrtX (prtX, lba1578), was deleted from the chromosome of L. acidophilus NCFM. Compared to the parent strain, the PrtX-deficient strain (ΔprtX) demonstrated increased autoaggregation, an altered cellular morphology, and pleiotropic increases in adhesion to mucin and fibronectin, in vitro. Furthermore, ΔprtX demonstrated increased in vitro immune stimulation of IL-6, IL-12, and IL-10 compared to wild-type, when exposed to mouse dendritic cells. Finally, in vivo colonization of germ-free mice with ΔprtX led to an increase in epithelial barrier integrity. The absence of PrtX within the exoproteome of a ΔprtX strain caused morphological changes, resulting in a pleiotropic increase of the organisms’ immunomodulatory properties and interactions with some intestinal epithelial cell components

    Shared mechanisms among probiotic taxa: implications for general probiotic claims

    Get PDF
    Strain-specificity of probiotic effects has been a cornerstone principle of probiotic science for decades. Certainly, some important mechanisms are present in only a few probiotic strains. But scientific advances now reveal commonalities among members of certain taxonomic groups of probiotic microbes. Some clinical benefits likely derive from these shared mechanisms, suggesting that sub-species-specific, species specific or genus-specific probiotic effects exist. Human trials are necessary to confirm specific health benefits. However, a strain that has not been tested in human efficacy trials may meet the minimum definition of the term ‘probiotic’ if it is a member of a well-studied probiotic species expressing underlying core mechanisms and it is delivered at an effective dose

    Shared mechanisms among probiotic taxa: implications for general probiotic claims

    Get PDF
    Strain-specificity of probiotic effects has been a cornerstone principle of probiotic science for decades. Certainly, some important mechanisms are present in only a few probiotic strains. But scientific advances now reveal commonalities among members of certain taxonomic groups of probiotic microbes. Some clinical benefits likely derive from these shared mechanisms, suggesting that sub-species-specific, speciesspecific or genus-specific probiotic effects exist. Human trials are necessary to confirm specific health benefits. However, a strain that has not been tested in human efficacy trials may meet the minimum definition of the term ‘probiotic’ if it is a member of a well-studied probiotic species expressing underlying core mechanisms and it is delivered at an effective dose

    Lactobacillus acidophilus Metabolizes Dietary Plant Glucosides and Externalizes Their Bioactive Phytochemicals

    Get PDF
    ABSTRACT Therapeutically active glycosylated phytochemicals are ubiquitous in the human diet. The human gut microbiota (HGM) modulates the bioactivities of these compounds, which consequently affect host physiology and microbiota composition. Despite a significant impact on human health, the key players and the underpinning mechanisms of this interplay remain uncharacterized. Here, we demonstrate the growth of Lactobacillus acidophilus on mono- and diglucosyl dietary plant glycosides (PGs) possessing small aromatic aglycones. Transcriptional analysis revealed the upregulation of host interaction genes and identified two loci that encode phosphotransferase system (PTS) transporters and phospho-β-glucosidases, which mediate the uptake and deglucosylation of these compounds, respectively. Inactivating these transport and hydrolysis genes abolished or severely reduced growth on PG, establishing the specificity of the loci to distinct groups of PGs. Following intracellular deglucosylation, the aglycones of PGs are externalized, rendering them available for absorption by the host or for further modification by other microbiota taxa. The PG utilization loci are conserved in L. acidophilus and closely related lactobacilli, in correlation with versatile growth on these compounds. Growth on the tested PG appeared more common among human gut lactobacilli than among counterparts from other ecologic niches. The PGs that supported the growth of L. acidophilus were utilized poorly or not at all by other common HGM strains, underscoring the metabolic specialization of L. acidophilus. These findings highlight the role of human gut L. acidophilus and select lactobacilli in the bioconversion of glycoconjugated phytochemicals, which is likely to have an important impact on the HGM and human host. IMPORTANCE Thousands of therapeutically active plant-derived compounds are widely present in berries, fruits, nuts, and beverages like tea and wine. The bioactivity and bioavailability of these compounds, which are typically glycosylated, are altered by microbial bioconversions in the human gut. Remarkably, little is known about the bioconversion of PGs by the gut microbial community, despite the significance of this metabolic facet to human health. Our work provides the first molecular insights into the metabolic routes of diet relevant and therapeutically active PGs by Lactobacillus acidophilus and related human gut lactobacilli. This taxonomic group is adept at metabolizing the glucoside moieties of select PG and externalizes their aglycones. The study highlights an important role of lactobacilli in the bioconversion of dietary PG and presents a framework from which to derive molecular insights into their metabolism by members of the human gut microbiota

    Genome-scale analyses of health-promoting bacteria: probiogenomics

    Get PDF
    The human body is colonized by an enormous population of bacteria (microbiota) that provides the host with coding capacity and metabolic activities. Among the human gut microbiota are health-promoting indigenous species (probiotic bacteria) that are commonly consumed as live dietary supplements. Recent genomics-based studies (probiogenomics) are starting to provide insights into how probiotic bacteria sense and adapt to the gastrointestinal tract environment. In this Review, we discuss the application of probiogenomics in the elucidation of the molecular basis of probiosis using the well-recognized model probiotic bacteria genera Bifidobacterium and Lactobacillus as examples

    Transcriptional analysis of oligosaccharide utilization by <em>Bifidobacterium lactis</em> Bl-04

    Get PDF
    BACKGROUND: Probiotic bifidobacteria in combination with prebiotic carbohydrates have documented positive effects on human health regarding gastrointestinal disorders and improved immunity, however the selective routes of uptake remain unknown for most candidate prebiotics. The differential transcriptomes of Bifidobacterium animalis subsp. lactis Bl-04, induced by 11 potential prebiotic oligosaccharides were analyzed to identify the genetic loci involved in the uptake and catabolism of α- and β-linked hexoses, and β-xylosides. RESULTS: The overall transcriptome was modulated dependent on the type of glycoside (galactosides, glucosides or xylosides) utilized. Carbohydrate transporters of the major facilitator superfamily (induced by gentiobiose and β-galacto-oligosaccharides (GOS)) and ATP-binding cassette (ABC) transporters (upregulated by cellobiose, GOS, isomaltose, maltotriose, melibiose, panose, raffinose, stachyose, xylobiose and β-xylo-oligosaccharides) were differentially upregulated, together with glycoside hydrolases from families 1, 2, 13, 36, 42, 43 and 77. Sequence analysis of the identified solute-binding proteins that determine the specificity of ABC transporters revealed similarities in the breadth and selectivity of prebiotic utilization by bifidobacteria. CONCLUSION: This study identified the differential gene expression for utilization of potential prebiotics highlighting the extensive capabilities of Bifidobacterium lactis Bl-04 to utilize oligosaccharides. Results provide insights into the ability of this probiotic microbe to utilize indigestible carbohydrates in the human gastrointestinal tract

    Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals

    Get PDF
    Approximately 75% of the global human population are lactose malabsorbers. In a previous clinical trial, it was shown that feeding a high-purity galactooligosaccharide (>95% GOS) could improve symptoms of lactose-intolerant subjects, attaining lactose tolerance in a majority of subjects. To investigate the mechanism, we examined the microbiome of human subjects before and after GOS feeding. The results show a significant shift in the microbiome of responsive individuals, including lactose-fermenting microbes in their stools. The high-purity prebiotic GOS resulted in adaptive shifts in the microbiome and correlated with improvement in clinical symptoms

    Improving Lactose Digestion and Symptoms of Lactose inTolerance with a Novel Galacto-Oligosaccharide (RP-G28): a Randomized, Double-Blind Clinical Trial.

    Get PDF
    Background Lactose intolerance (LI) is a common medical problem with limited treatment options. The primary symptoms are abdominal pain, diarrhea, bloating, flatulence, and cramping. Limiting dairy foods to reduce symptoms contributes to low calcium intake and the risk for chronic disease. Adaptation of the colon bacteria to effectively metabolize lactose is a novel and potentially useful approach to improve lactose digestion and tolerance. RP-G28 is novel galacto-oligosaccharide (GOS) being investigated to improve lactose digestion and the symptoms of lactose intolerance in affected patients. Methods A randomized, double-blind, parallel group, placebo-controlled study was conducted at 2 sites in the United States. RP-G28 or placebo was administered to 85 patients with LI for 35 days. Post-treatment, subjects reintroduced dairy into their daily diets and were followed for 30 additional days to evaluate lactose digestion as measured by hydrogen production and symptom improvements via a patient-reported symptom assessment instrument. Results Lactose digestion and symptoms of LI trended toward improvement on RP-G28 at the end of treatment and 30 days post-treatment. A reduction in abdominal pain was also demonstrated in the study results. Fifty percent of RP-G28 subjects with abdominal pain at baseline reported no abdominal pain at the end of treatment and 30 days post treatment (p = 0.0190). RP-G28 subjects were also six times more likely to claim lactose tolerance post-treatment once dairy foods had been re-introduced into their diets (p = 0.0389). Conclusions Efficacy trends and favorable safety/tolerability findings suggest that RP-G28 appears to be a potentially useful approach for improving lactose digestion and LI symptoms. The concurrent reduction in abdominal pain and improved overall tolerance could be a meaningful benefit to lactose intolerant individuals. Study registration ClinicalTrials.gov NCT01113619
    • …
    corecore