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Shared mechanisms among probiotic taxa: implications
for general probiotic claims
Mary Ellen Sanders1, Andrew Benson2, Sarah Lebeer3,
Daniel J Merenstein4 and Todd R Klaenhammer5

Strain-specificity of probiotic effects has been a cornerstone

principle of probiotic science for decades. Certainly, some

important mechanisms are present in only a few probiotic

strains. But scientific advances now reveal commonalities

among members of certain taxonomic groups of probiotic

microbes. Some clinical benefits likely derive from these shared

mechanisms, suggesting that sub-species-specific, species-

specific or genus-specific probiotic effects exist. Human trials

are necessary to confirm specific health benefits. However, a

strain that has not been tested in human efficacy trials may

meet the minimum definition of the term ‘probiotic’ if it is a

member of a well-studied probiotic species expressing

underlying core mechanisms and it is delivered at an effective

dose.
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Introduction
Probiotics are live microorganisms that, when adminis-

tered in adequate amounts, confer a health benefit on the

host [1��]. Probiotics span a wide range of uses, including

different regulatory categories, different target host spe-

cies, and different routes of administration (oral, in-

travaginal, topical) (Figure 1). The strain-specificity of

probiotic effects has been accepted for decades as a

fundamental principle based on mechanistic research

by scientists in the field. Today, it is rare to see

commercial products that do not list strain designations

or to read a clinical trial that does not identify the

probiotic to the strain level. Globally recognized guide-

lines have reinforced this concept [2].

Here we examine the concept that shared mechanisms

exist among taxonomic groups that include many differ-

ent strains (Figure 2). This concept was introduced

previously [1��,3�], but here we expand on the mechanis-

tic evidence to support this concept. Studies have shown,

and continue to show, that certain types of live micro-

organisms are beneficial to human health as assessed

through a range of digestive health endpoints. The num-

ber of tested strains is large and the range of health

benefits demonstrated is wide. We explore the signifi-

cance of these observations in the context of science-

based, responsible communication of health benefits of

probiotics to consumers and healthcare providers. We

focus on examples of Lactobacillus and Bifidobacterium,
because these are the traditionally used probiotics, but

the concepts are also valid for the next generation of

probiotics [4].

Shared mechanisms, shared benefits:
mechanistic rationale
In the probiotic field, it is clear that not all probiotics

function in the same manner. For example, the specific

bacteriocin produced by Lactobacillus salivarius UCC118,

which conferred resistance to Listeria monocytogenes infec-

tion when expressed in a mouse model [5], has not been

found in other strains of L. salivarius [6]. However, it is

equally clear that not all probiotic strains function in a

purely unique manner. As we discuss more completely

below, the ability to produce short chain fatty acids

(SCFAS) is a feature shared by many different probiotic

taxa, and surely plays a significant role in probiotic-medi-

ated health benefits. Consider the body of research con-

ducted on clinical effects of probiotics for prevention of

necrotizing enterocolitis: many taxa have been tested,

most of which resulted in similar clinical outcomes [7],

supporting the conclusion that probiotics from different

taxa have benefits in necrotizing enterocolitis. Here

we provide examples of mechanisms, which likely play

important roles in directing probiotic health benefits,

that have been identified among strains within probiotic

taxa. In some cases the traits may be shared broadly,

among most strains in a genus. In other cases, the distri-

bution of the mechanism may be much narrower. When

Available online at www.sciencedirect.com

ScienceDirect

www.sciencedirect.com Current Opinion in Biotechnology 2018, 49:207–216

mailto:mes@mesanders.com
http://www.sciencedirect.com/science/journal/09581669/49
http://dx.doi.org/10.1016/j.copbio.2017.11.011
http://dx.doi.org/10.1016/j.copbio.2017.09.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2017.09.007&domain=pdf
http://www.sciencedirect.com/science/journal/09581669


mechanisms important to the expression of a health

benefit are shared, shared health benefits may result.

Bifidobacterium shunt and short chain fatty acid

production

The genus Bifidobacterium contains species that are gen-

erally known for their ability to degrade complex carbo-

hydrates and metabolize the derived monomers through a

shared central metabolic pathway known as the Bifido-
bacterium shunt (Bif Shunt). This pathway depends on

key enzymatic steps catalyzed by a phosphoketolase

enzyme that degrades hexose and pentose phosphates.

A unique feature of the Bif Shunt pathway is its increased

capacity for energy harvest from five- and six-carbon

sugars, which generally yields one additional ATP per

every two molecules of glucose compared to pathways

in other organisms [8]. Reliance of Bifidobacterium spe-

cies on the Bif Shunt pathway as a central metabolic

resource likely reflects an evolutionary adaptation in

Bifidobacterium that confers a fitness advantage during

natural colonization.

In addition to energy generation, the Bif Shunt pathway

yields SCFA as end products, specifically, lactate and

acetate (two moles of lactate and three moles acetate per

two moles of glucose) [8]. Increases in fecal SCFAs have

been observed in studies that administer probiotic species

of Bifidobacterium as well as studies where prebiotics are

used to stimulate abundances of native colonizing Bifi-
dobacterium species [9–12]. These SCFAs have a broad

array of positive effects on the human GI tract, either

directly or by conversion to other SCFA such as butyrate

by other members of the microbiota [13�,14,15,16]. These

positive effects are mediated through multiple SCFA

receptors on colonocytes that directly control energy

and non-energy dependent motility and electrolyte trans-

port [17–21]. Beyond the transport and contractile func-

tions, SCFAs can also influence local inflammation by

affecting synthesis of inflammatory cytokines, inhibiting
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Probiotics: what is encompassed under this term (updated from Hill et al. [1��]). By definition, a health benefit must be demonstrated for a

probiotic, at either a strain-specific or, as discussed in this paper, at a taxonomic level where mechanisms are shared. Probiotics can be

administered via different routes (oral, intravaginal, topical, etc.) and are not limited to human use (companion animals, livestock, fish). The

probiotic definition is not restricted by regulatory category, as clarified here. Dead microbes, microbial endproducts, microbial components and

undefined microbial mixes do not come under the probiotic classification [4,65–68].
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synthesis of TNF-alpha and IL-6 and stimulating syn-

thesis of the anti-inflammatory cytokine IL-10 in macro-

phage and neutrophils [22–25]. These effects improve

inflammatory tone and have added to earlier interest in

incorporating SCFAs into anti-inflammatory enemas and

dietary SCFA-stimulating prebiotics as treatments in

patients with inflammatory bowel disease [26–30].

Comparative genomic analysis of publically available

Bifidobacterium genomes reveals that all thirteen enzymes

that comprise the Bif Shunt pathway are among the

core set of �480 genes shared across all species of

Bifidobacterium. This finding implies that the pathway

is ancestral to the common ancestor of extant Bifidobac-
terium species and strains. If this pathway indeed provides

a fitness advantage for growth of Bifidobacterium species in

the GI tract, it is reasonable to suspect that signatures of

such an evolutionary adaptation would be observable in

phylogeny of the Bif Shunt enzymes, particularly the

key phosphoketolase Xfp, which encodes a bifunctional

fructose-6-phosphate/xylulose-5-phosphate phosphoke-

tolase. Phylogenetic analysis of the Xfp phosphoketolase

from several species and strains of Bifidobacterium, along

with phosphoketolases from other members of the Phy-

lum Actinobacteria, as well as members of the Firmicutes,
Proteobacteria, and Cyanobacteria supports this hypothesis.

As illustrated from the unrooted dendrogram in Figure 3,

the Xfp proteins from the family Bifidobacteraceae (Bifi-
dobacterium, Scardovia, Gardenella) form a very distinct

cluster, with long branch length (greater genetic dis-

tance), distinctively separating this cluster from other

members of the Actinobacteria, a result that would be

expected if Xfp has undergone evolutionary adaptation.

The shared ancestry of the Bif Shunt pathway in Bifido-
bacterium species, the potential fitness advantage for

colonization, and the shared benefits of SFCAs produced

from this pathway provide support for a core benefit that

is shared across species. Although not addressed in detail

here, in a similar vein Lactobacillus species share key

metabolic traits since they predominately derive energy

through fermentation of sugars into lactic acid, via either

homofermentative or heterofermentative pathways, which

also cluster in separate phylogenetic clades [31].

Probiotic cell surface architecture

Flooding the upper small intestine with ingested Gram-

positive bacteria (� 108�9/gm) temporarily overwhelms

the resident population (�104�7/cm2) during the transient

passage of microbes through the GI-tract. Because of

the dynamic changes constantly occurring in the mucosal

surface of the small intestine, such as variable mucin

production and accumulation, orally delivered microbes

are more likely to have greater access to the intestinal

mucosa, microvilli, Peyer’s Patches, and dendritic cells

signaling the immune system.

Important core mechanisms that underlie common pro-

biotic functions are found in the shared architecture of the

cell surface structures of Gram-positive microbes. Clearly,

not all Gram-positive microbes expressing these traits

are necessarily probiotics or beneficial. But when these

mechanisms are distributed among certain taxa known to

be probiotics, they may contribute to certain health

benefits in a somewhat predictable manner. These shared

architectures vary considerably among species and likely

impact the host’s physiological responses to beneficial

microbes that are either delivered orally or applied spa-

tially. These core cell surface architectures found among

species of Gram-positive bacteria are: peptidoglycan; cell

wall teichoic and lipoteichoic acid (LTA); and common

but varying components including exopolysaccharides,

surface layer associated proteins (SLAPS), mucin-binding

proteins (MUBs), fibronectin binding proteins, and pili.

These bacterial cell surface macromolecules are key

factors in this beneficial microorganism-host crosstalk,

as they can interact directly with the intestinal epithe-

lium, mucus, and host pattern recognition receptors of the

gastrointestinal mucosa.

Mucus-binding, fibronectin-binding and pilin proteins

The sortase pathway is the most common mechanism to

transport, deliver and link extracellular proteins to the

surface of Gram-positive bacteria [32]. This mechanism

underlies the presentation of MUBs, with their repeated

mucus-binding domains (reviewed by Etzold et al. [33]).

Linkage of MUBs to the peptidoglycan cell wall occurs

via a conserved Leu-Pro-any-Thr-Gly motif. First recog-

nized and characterized in Lactobacillus reuteri, MUBs are

widely distributed among commensal and probiotic lac-

tobacilli and bifidobacteria [33]. Genetic knockouts of

MUB proteins result in loss of mucin binding ability and

shorter retention times during transit through the mam-

malian GI-tract [34,35].

Sortase-dependent, cell surface pili have also been

defined in both lactobacilli (rhamnosus and ruminus
[36]) and bifidobacteria (bifidum, longum, dentium, adoles-
centis and lactis [37]). Close interaction with the intestinal

mucosa and mucin binding are key attributes commonly

exhibited by these pilin-like appendages. Mucin binding

via MUB’s and pili are considered key mechanisms

of ‘core’ probiotic activity that impacts retention in the

GI-tract, competitive exclusion of pathogens [38], immu-

nomodulation and structural integrity of the intestinal

mucosa. For instance, the sortase-dependent SpaCBA pili

of the model probiotic L. rhamnosus GG promote human

intestinal retention [36], competitive exclusion with the

pathogen Enterococcus faecium having similar mucus-binding

pili [38] and immunomodulation in macrophages [39]. In

addition, certain pili such as these glycosylated SpaCBA

pili of L. rhamnosus GG, also more specifically modulate

immune responses via special PRRs such as the DC-SIGN

receptor of dendritic cells [40]. Although improved

210 Food biotechnology
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persistence of a probiotic does not necessarily lead to a

health benefit, it provides an increased opportunity for a

probiotic to interact with its host.

Fibronectin-binding proteins

Fibronectin is a multi-domain glycoprotein found ubiq-

uitously in human body fluids and extracellular matrices

of a variety of mammalian tissues, including intestinal

epithelial cells. Fibronectin-binding proteins (FnBPs)

have been identified and characterized in a wide variety

of host-associated bacteria, including both pathogens

and commensals [41]. Colonization or retention in the

GI-tract highlights the role of multiple adhesions,

including FnBP’s. FnBP’s are core adhesions found

among Gram-positive commensals and probiotics and

found in L. acidophilus (S-layer associated — see below),

Shared core probiotic mechanisms Sanders et al. 211
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and the non-S-layer producing species of L. casei,
L. plantarum, L. brevis and L. rhamnosus.

Surface-layer proteins

Another widely used commercial probiotic species,

L. acidophilus, produces an extracellular crystalline pro-

tein (SlpA) that creates a surface layer. These types of

proteins coat the cell surface of lactobacilli taxonomi-

cally assigned to the Lactobacillus acidophilus group

A; including L. acidophilus, L. helveticus, L. crispatus,
L. amylophilus, L. gallinarum, L. jensenii, L. kefiranofaciens
and L. amylovorus. In recent studies with L. acidophilus, it

has been discovered that multiple SLAPs exist (�20–40)

and are loosely embedded within the major crystalline

surface layer protein, SlpA [42]. They likely act as

extracellular cell surface proteins able to interact with

mucosal tissues, and exert significant physiological,

enzymatic and immunological consequences. One nota-

ble example is that the fibronectin binding protein of

L. acidophilus is a SLAP [41]. SLAP proteins vary among

Lactobacilllus species, and are absent from species lack-

ing an S-layer; notably the probiotic species of L. gasseri,
L. johnsonii, L. reuteri, and L. (para)casei [43]. Yet certain

probiotic Lactobacillus species clearly produce the major

surface layer proteins (which alone have physiological

and immunological responses), and these S-layers also

embed loosely associated proteins that may intimately

interact with the intestinal mucosa. Thus, both S-layer

proteins and SLAPs represent a collection of proteins

that likely elicit common core mechanism for this bac-

terial group.

Peptidoglycan and lipoteichoic acid

During probiotic administration, a high dose of microbial-

associated molecular patterns (MAMPs) is consumed,

which can all interact with host PRRs resulting in various

immunomodulatory effects. Toll-like receptors (TLRs)

are the best documented PRRs being able to detect

various probiotic MAMPs. Since the most common pro-

biotic taxa are Gram-positive bacteria, TLR2 is a key

PRR because peptidoglycan and LTA are documented

MAMPs (reviewed in [44��]). The core molecular archi-

tecture of peptidoglycan and LTA is well conserved

among lactobacilli — and bifidobacteria (e.g. [45]).

TLR2 has an important barrier-protective function in

intestinal epithelial cells [46]. Positively impacting intesti-

nal barrier function is a major probiotic mechanism [47].

However, it should be noted that — although Lactobacillus
LTA is a well-documented MAMP interacting with

TLR2/6 heterodimers [48], immunostimulation by LTA

of lactobacilli should be carefully taken into account, for

instance for applications in inflammatory bowel disease.

Modification of LTA [49] or removal of LTA [50] have

elicited significant anti-inflammatory consequences ob-

served in mouse models of both colitis and colon cancer.

In this case, the core mechanism is that probiotic Gram-

positive microbes with reduced expression of LTA are

more likely to modulate the anti-inflammatory immuno-

logical consequences that affect inflammatory bowel dis-

eases (as also reviewed in [51]).

Multiple other MAMP-PRR interactions between pro-

biotic bacteria and host cells can also occur and impact

on the final host responses. Inside the probiotic bacterial

cells, unmethylated cytosine-guanine (CpG)-containing

DNA is an important ligand for TLR9. TLR9 is

expressed by many cell types located in the intestine,

including epithelial cells and classical immune cells.

TLR9 signaling is also important for gut epithelial

homeostasis. Recently, a bioinformatics analysis was per-

formed on the frequency of potentially immunostimula-

tory CpG motifs in the genomes of gut commensal

bacteria across major bacterial phyla [52�]. The frequency

of these motifs (all hexamers) was linearly dependent on

the genomic G + C content: species belonging to Proteo-

bacteria, Bacteroidetes and Actinobacteria (including

bifidobacteria) carried high counts of GTCGTT, the

optimal motif stimulating human TLR9. However,

despite having an A + T rich genome content, Lactoba-
cillus casei, Lactobacillus plantarum and Lactobacillus
rhamnosus strains that have been marketed as probiotics

were found to have high counts of GTCGTT motifs.

Indeed, CpG-rich DNA from the widely used probiotic

strain L. rhamnosus GG has been shown to interact with

TLR9 on endosomes to stimulate Th1 responses

[53,54]. Not all probiotic immunomodulatory molecules

function through PRRs. For example, some widely

excreted enzymes seem to actively impact cytokine

activity, such as the conserved cell envelop associated

PrtP-proteases (also named lactocepin), which has been

shown to selectively degrade proinflammatory cytokines

[55��]. In their recent large genome comparison of lac-

tobacilli, Sun et al. [56�] also highlight these proteases as

potential probiotic factors, which show clear clade asso-

ciation, notably with the L. delbrueckii, L. casei and L.
buchneri clades, part of the L. salivarius clade, and the

Carnobacterium clade. The presence of this probiotic

feature is thus a nice example of a property existing

beyond the strain-specific dogma. Furthermore, several

bacterial metabolites such as the SCFAs mentioned

above and various aminoacids (e.g. trypthophan-derived

products), all can impact directly on the host immune

status (e.g. [57]). In line with these more ‘metabolic

modes of action’, the only ‘probiotic’ mechanism of

action currently approved in Europe by EFSA is

improved lactose digestion by live yoghurt cultures

containing at least 108 CFU/g Lactobacillus delbrueckii
subsp. bulgaricus and Streptococcus thermophilus, because

these bacteria are known to express the necessary

enzymes (lactase or beta-galactosidase) to degrade lac-

tose. Similarly, strains producing high levels of vitamins

(e.g. vitamin B12 by certain lactobacilli [58] and folate

by certain bifidobacteria [59]) are being selected that

produce enough to meet minimum daily requirements.

212 Food biotechnology
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Category-based evidence
Systematic reviews (SR) and meta-analyses (MAs) are

important tools for assessing the totality of evidence for a

given intervention. An essential component of the SR/

MA process is clear definition of the intervention being

researched. In the case of probiotics, over 200 meta-

analyses have been published and most of these have

not been conducted on individual strains. The implied

rationale for this is that the outcomes being studied are

expected to be expressed by many different strains.

Although the essence of this assumption may not be

clearly considered or even understood by many of the

authors of these SR/MAs, the rationale may be sound

[60]. To the extent that a common mechanism can be

described among a group of different strains, it is scien-

tifically sound to pool results on clinical outcomes on

those strains.

The process of assigning health benefits to a category,

rather than a defined entity, is not unique to the probi-

otic field. Fecal microbial transplant to prevent recur-

rent Clostridium difficile disease, an intervention widely

accepted in the medical community, is a case-in-point.

The fecal preparations are wholly undefined, vary by

donating host, are delivered in different manners, and

are undoubtedly immensely impacted by handling

practices, which surely take a toll on strict anaerobe

populations.

Other examples come from dietary recommendations.

The broad category of ‘dietary fiber’ is recommended

and fully endorsed, yet dietary fibers are a broad category,

differing in their structure and their physiological impact.

Perhaps resulting from the explosion of human micro-

biome research revealing the importance of live microbes

in human health, fermented foods have surged in popu-

larity. Fermented foods that retain their live microbial

constituents (i.e. have not been processed to kill or

remove the fermentation microbes) have been around

for millennia, but are being recognized anew for their

potential health benefits [61]. Fermented foods often

have a rich, undefined microbial content. The health

benefits due to the microbial components of these foods

are examples of expression of health promoting mecha-

nisms likely shared among many different taxa.

It is widely accepted that there are class effects of

medications, yet different medications comprise a

given class. For example, as a class all beta-adrenergic

blocking agents (beta blockers) work by blocking

receptor  sites epinephrine and norepinephrine result-

ing in a lower pulse rate and reduced blood pressure.

However, there are many differences among the vari-

ous beta blocking medications and they have a wide

range of indications. The same type of overall class

benefit is seen with 3-hydroxy-3-methylglutaryl coen-

zyme-A reductase inhibitors, proton pump inhibitors,

selective serotonin reuptake inhibitors and many other

drug classes.

Overall implications
Probiotic claims

Assuring that consumers are not misled is a common

objective among global agencies responsible for oversight

of health benefit claims on probiotic products. Preventing

unsubstantiated claims is a top priority. Unfortunately, at

times this can put a limit on consumer access to legitimate

information, with negative implications for the health of

adults and children around the world. One example is the

situation in the EU, which currently prohibits the use of

the word ‘probiotic’ on foods. As previously asserted [1��],
consumers are not misled by products being labeled as

‘probiotic’ if the products contain adequate amounts of a

well-studied probiotic species documented in numerous

studies to confer a beneficial effect. This idea is rein-

forced through the common mechanistic properties of

probiotic taxa presented here. We provide the scientific

rationale and well-documented examples of mechanisms

for defining commonalities that exist for groupings of

individual strains. It is noteworthy that this approach

has been accepted by regulatory approaches in Canada

and Italy, and is consistent with the claim EFSA allowed

for the species Lactobacillus bulgaricus and Streptococcus
thermophilus [62].

Probiotic product labels

It should be emphasized that the evidence presented

herein does not eliminate the responsibility for research-

ers and commercial entities to continue to fully define and

disclose the content of probiotic products to the strain

level. Fermented foods, as indicated in Figure 1, to the

extent their microbial content is undefined, are not pro-

biotic products. But any product claiming to be a probiotic

must accurately disclose the levels of the microbes pres-

ent and identify them to the genus, species and strain

level, ideally including complete genome sequences.

Such disclosure is needed to assure product consistency,

transparency in marketing and the ability to repeat

research. Additionally, human studies with defined strains

and doses are necessary to support specific health benefit

claims.

Conclusion
In 2014, a consensus group of experts recommended to

‘Include in the framework for definition of probiotics

microbial species that have been shown in properly

controlled studies to confer benefits to health’ [1��].

Although laboratory assessments document many ways

in which strains may differ [63], we lack direct evidence

on how different strains may utilize similar mechanisms

to exert similar clinical outcomes. Most clinical studies

do not compare multiple strains of the same species.
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However numerous meta-analyses show that similar clini-

cal benefits are achieved by many different strains [64].

It is not possible to assert with 100% confidence that the

presence of certain metabolic pathways or molecular

mechanisms will confer a given clinical benefit. A strain

may be deficient in overall physiological fitness or may

otherwise possess traits that override adequate expression

of encoded properties, which precludes detection of an

overall health benefit. However, as research continues to

evolve, associations between the presence of specific

mechanisms and clinical benefits will continue to

strengthen confidence. The net clinical effect of a live

bacterium will be dictated by the complex array of genetic

expression and technological production factors for pro-

biotic cultures that impact viability and shelf-life. Human

trials to confirm that a given mechanism drives the

observed clinical effects will improve our understanding.

The probiotic field would benefit from agreement among

experts regarding what constitutes adequate evidence of

assignment of a clinical benefit to a larger taxonomic

group.

We present here evidence for mechanisms that are shared

among probiotic taxonomic groups at higher levels than

strain. Although further research is needed to confirm the

link between a given mechanism and clinical benefit, we

propose that the distribution of such mechanisms among

all members of a taxon provides a rationale that some

general probiotic benefits can be expected in a non-

strain-specific manner.
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