3 research outputs found

    Upper limits for undetected trace species in the stratosphere of Titan

    Full text link
    In this paper we describe a first quantitative search for several molecules in Titan's stratosphere in Cassini CIRS infrared spectra. These are: ammonia (NH3), methanol (CH3OH), formaldehyde (H2CO), and acetonitrile (CH3CN), all of which are predicted by photochemical models but only the last of which observed, and not in the infrared. We find non-detections in all cases, but derive upper limits on the abundances from low-noise observations at 25{\deg}S and 75{\deg}N. Comparing these constraints to model predictions, we conclude that CIRS is highly unlikely to see NH3 or CH3OH emissions. However, CH3CN and H2CO are closer to CIRS detectability, and we suggest ways in which the sensitivity threshold may be lowered towards this goal.Comment: 11 pages plus 6 figure file

    Detection of Propene in Titan's Stratosphere

    Get PDF
    The Voyager 1 flyby of Titan in 1980 gave a first glimpse of the chemical complexity of Titan's atmosphere, detecting many new molecules with the infrared spectrometer (IRIS). These included propane (C3H8) and propyne (CH3C2H), while the intermediate-sized C3Hx hydrocarbon (C3H6) was curiously absent. Using spectra from the Composite Infrared Spectrometer (CIRS) on Cassini, we show the first positive detection of propene (C3H6) in Titan's stratosphere (5-sigma significance), finally filling the three-decade gap in the chemical sequence. We retrieve a vertical abundance profile from 100-250 km, that varies slowly with altitude from ~2 ppbv at 100 km, to ~5 ppbv at 200 km. The abundance of C3H6 is less than both C3H8 and CH3C2H, and we remark on an emerging paradigm in Titan's hydrocarbon abundances whereby: alkanes > alkynes > alkenes within the C2Hx and C3Hx chemical families in the lower stratosphere. More generally, there appears to be much greater ubiquity and relative abundance of triple-bonded species than double-bonded, likely due to the greater resistance of triple bonds to photolysis and chemical attack.Comment: 16 pages; 4 figures; 1 table. Withdrawn due to journal polic
    corecore