675 research outputs found

    Structured Linearization of Discrete Mechanical Systems for Analysis and Optimal Control

    Full text link
    Variational integrators are well-suited for simulation of mechanical systems because they preserve mechanical quantities about a system such as momentum, or its change if external forcing is involved, and holonomic constraints. While they are not energy-preserving they do exhibit long-time stable energy behavior. However, variational integrators often simulate mechanical system dynamics by solving an implicit difference equation at each time step, one that is moreover expressed purely in terms of configurations at different time steps. This paper formulates the first- and second-order linearizations of a variational integrator in a manner that is amenable to control analysis and synthesis, creating a bridge between existing analysis and optimal control tools for discrete dynamic systems and variational integrators for mechanical systems in generalized coordinates with forcing and holonomic constraints. The forced pendulum is used to illustrate the technique. A second example solves the discrete LQR problem to find a locally stabilizing controller for a 40 DOF system with 6 constraints.Comment: 13 page

    Parallel block structured adaptive mesh refinement on graphics processing units.

    Get PDF
    Block-structured adaptive mesh refinement is a technique that can be used when solving partial differential equations to reduce the number of zones necessary to achieve the required accuracy in areas of interest. These areas (shock fronts, material interfaces, etc.) are recursively covered with finer mesh patches that are grouped into a hierarchy of refinement levels. Despite the potential for large savings in computational requirements and memory usage without a corresponding reduction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding complex communication and data movement requirements to a simulation. In this paper, we describe the design and implementation of a native GPU-based AMR library, including: the classes used to manage data on a mesh patch, the routines used for transferring data between GPUs on different nodes, and the data-parallel operators developed to coarsen and refine mesh data. We validate the performance and accuracy of our implementation using three test problems and two architectures: an eight-node cluster, and over four thousand nodes of Oak Ridge National Laboratory’s Titan supercomputer. Our GPU-based AMR hydrodynamics code performs up to 4.87x faster than the CPU-based implementation, and has been scaled to over four thousand GPUs using a combination of MPI and CUDA

    Polyhedral Analysis using Parametric Objectives

    Get PDF
    The abstract domain of polyhedra lies at the heart of many program analysis techniques. However, its operations can be expensive, precluding their application to polyhedra that involve many variables. This paper describes a new approach to computing polyhedral domain operations. The core of this approach is an algorithm to calculate variable elimination (projection) based on parametric linear programming. The algorithm enumerates only non-redundant inequalities of the projection space, hence permits anytime approximation of the output

    Projected climate adaptation benefits of One CGIAR

    Get PDF
    In the present analysis, we first create a projection of the number of beneficiaries (rural individuals and households) in climate hazard areas using geospatial datasets on climate hazards and rural population. We find that: (1) By 2030, CGIAR’s work on climate adaptation is projected to benefit 234 million rural people in 59 million rural households in regions facing significant climate hazards. (2) Some 66% of the projected individual beneficiaries are in SA (34%) and SEA (32%). India (26%) and China (24%) alone account for about 50% of beneficiaries globally. Approximately 15% are in SSA, equally divided between ESA and WCA; the remaining beneficiaries are in LAC (7%) and CWANA (11%). (3) Adoption of climate-smart agricultural practices, climate-adapted varieties, and climate-related advisory services will increase productivity by an average of 24 % and, in at least 62% of cases, will also reduce interannual yield variability. Despite these significant potential upside gains, changing farming practices also carries production risk. (4) Scaling up both improved varieties and improved agronomy could more than double economic benefits as compared to improved varities alone; this suggests that integrative programs that bundle several innovations have the potential to amplify impact

    Complete Genome Sequence of Streptococcus pneumoniae Strain BVJ1JL, a Serotype 1 Carriage Isolate from Malawi.

    Get PDF
    Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and bacteremia. Serotype 1 is rarely carried but is commonly associated with invasive pneumococcal disease, and in the African "meningitis belt," it is prone to cause cyclical epidemics. We report the complete genome sequence of S. pneumoniae serotype 1 strain BVJ1JL, isolated in Malawi
    • …
    corecore