2,289 research outputs found

    Operation of a high purity germanium crystal in liquid argon as a Compton suppressed radiation spectrometer

    Get PDF
    A high purity germanium crystal was operated in liquid argon as a Compton suppressed radiation spectrometer. Spectroscopic quality resolution of less than 1% of the full-width half maximum of full energy deposition peaks was demonstrated. The construction of the small apparatus used to obtain these results is reported. The design concept is to use the liquid argon bath to both cool the germanium crystal to operating temperatures and act as a scintillating veto. The scintillation light from the liquid argon can veto cosmic-rays, external primordial radiation, and gamma radiation that does not fully deposit within the germanium crystal. This technique was investigated for its potential impact on ultra-low background gamma-ray spectroscopy. This work is based on a concept initially developed for future germanium-based neutrinoless double-beta decay experiments.Comment: Paper presented at the SORMA XI Conference, Ann Arbor, MI, May 200

    Scientific mindfulness: a foundation for future themes in international business

    Get PDF
    We conceptualize new ways to qualify what themes should dominate the future IB research agenda by examining three questions: Whom should we ask? What should we ask and which selection criteria should we apply? What are the contextual forces? We propose scientific mindfulness as the way forward for generating themes in IB research

    Does Concomitant CABG Influence the Outcomes of Post-Myocardial Infarction Ventricular Septal Defect Repair?

    Get PDF
    Introduction: Ventricular septal defect (VSD) following myocardial infarction (MI) is a relatively infrequent complication with high mortality. Over time, understanding of the pathology and its management has resulted in improved outcomes; however, controversies remain. Objective: We sought to investigate the effect of concomitant coronary artery bypass graft (CABG) on outcomes following post-MI VSD repair. Methods: Electronic search was performed to identify all relevant studies published from 2000 to 2018. After assessment for inclusion and exclusion criteria, 66 studies were selected for the analysis. Data were extracted and pooled for systematic review and meta-analysis. Results: Average age was 68.7 years (95% CI 67.3-70.1) with 57% (95% CI 54-60) males. Coronary angiogram was available preoperatively in 94% (95% CI 92-96) of patients. Single-vessel disease was most common (47%, 95% CI 42-52) with left anterior descending coronary artery the most commonly involved vessel (55%, 95% CI 46-63). Concomitant CABG was performed in 52% (95% CI 46-57) of patients. Of these, infarcted territory was revascularized in 54% (95% CI 23-82). No significant survival difference was observed between those who had concomitant CABG versus those without CABG at 30 days (65%, 95% CI 58-72) vs (60%, 95% CI 47-72), 1 year (59%, 95% CI 50-68) vs (51%, 95% CI 41-61), and 5 years (46%, 95% CI 38-54) vs (39%, 95% CI 27-52) respectively. Discussion: Overall, concomitant CABG did not have a significant effect on survival following VSD repair, therefore, decision on revascularization should be weighed against the risks associated with prolonged cardiopulmonary bypass

    Should patients with abnormal liver function tests in primary care be tested for chronic viral hepatitis: cost minimisation analysis based on a comprehensively tested cohort

    Get PDF
    Background Liver function tests (LFTs) are ordered in large numbers in primary care, and the Birmingham and Lambeth Liver Evaluation Testing Strategies (BALLETS) study was set up to assess their usefulness in patients with no pre-existing or self-evident liver disease. All patients were tested for chronic viral hepatitis thereby providing an opportunity to compare various strategies for detection of this serious treatable disease. Methods This study uses data from the BALLETS cohort to compare various testing strategies for viral hepatitis in patients who had received an abnormal LFT result. The aim was to inform a strategy for identification of patients with chronic viral hepatitis. We used a cost-minimisation analysis to define a base case and then calculated the incremental cost per case detected to inform a strategy that could guide testing for chronic viral hepatitis. Results Of the 1,236 study patients with an abnormal LFT, 13 had chronic viral hepatitis (nine hepatitis B and four hepatitis C). The strategy advocated by the current guidelines (repeating the LFT with a view to testing for specific disease if it remained abnormal) was less efficient (more expensive per case detected) than a simple policy of testing all patients for viral hepatitis without repeating LFTs. A more selective strategy of viral testing all patients for viral hepatitis if they were born in countries where viral hepatitis was prevalent provided high efficiency with little loss of sensitivity. A notably high alanine aminotransferase (ALT) level (greater than twice the upper limit of normal) on the initial ALT test had high predictive value, but was insensitive, missing half the cases of viral infection. Conclusions Based on this analysis and on widely accepted clinical principles, a "fast and frugal" heuristic was produced to guide general practitioners with respect to diagnosing cases of viral hepatitis in asymptomatic patients with abnormal LFTs. It recommends testing all patients where a clear clinical indication of infection is present (e.g. evidence of intravenous drug use), followed by testing all patients who originated from countries where viral hepatitis is prevalent, and finally testing those who have a notably raised ALT level (more than twice the upper limit of normal). Patients not picked up by this efficient algorithm had a risk of chronic viral hepatitis that is lower than the general population

    Deep Neural Networks for Energy and Position Reconstruction in EXO-200

    Full text link
    We apply deep neural networks (DNN) to data from the EXO-200 experiment. In the studied cases, the DNN is able to reconstruct the relevant parameters - total energy and position - directly from raw digitized waveforms, with minimal exceptions. For the first time, the developed algorithms are evaluated on real detector calibration data. The accuracy of reconstruction either reaches or exceeds what was achieved by the conventional approaches developed by EXO-200 over the course of the experiment. Most existing DNN approaches to event reconstruction and classification in particle physics are trained on Monte Carlo simulated events. Such algorithms are inherently limited by the accuracy of the simulation. We describe a unique approach that, in an experiment such as EXO-200, allows to successfully perform certain reconstruction and analysis tasks by training the network on waveforms from experimental data, either reducing or eliminating the reliance on the Monte Carlo.Comment: Accepted version. 33 pages, 28 figure

    Measurement of the Spectral Shape of the beta-decay of 137Xe to the Ground State of 137Cs in EXO-200 and Comparison with Theory

    Full text link
    We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden non-unique β\beta-decay transition ^{137}\textrm{Xe}(7/2^-)\to\,^{137}\textrm{Cs}(7/2^+). The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultra-low background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal-to-background ratio of more than 99-to-1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden non-unique β\beta-decay shape, this work constitutes a novel test of the calculated electron spectral shapes in the context of the reactor antineutrino anomaly and spectral bump.Comment: Version as accepted by PR

    Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double beta decay

    Full text link
    The next-generation Enriched Xenon Observatory (nEXO) is a proposed experiment to search for neutrinoless double beta (0νββ0\nu\beta\beta) decay in 136^{136}Xe with a target half-life sensitivity of approximately 102810^{28} years using 5×1035\times10^3 kg of isotopically enriched liquid-xenon in a time projection chamber. This improvement of two orders of magnitude in sensitivity over current limits is obtained by a significant increase of the 136^{136}Xe mass, the monolithic and homogeneous configuration of the active medium, and the multi-parameter measurements of the interactions enabled by the time projection chamber. The detector concept and anticipated performance are presented based upon demonstrated realizable background rates.Comment: v2 as publishe
    corecore