82 research outputs found

    Measuring the Moment-to-Moment Variability of Tinnitus: The TrackYourTinnitus Smart Phone App

    Get PDF
    Tinnitus, the phantom perception of sound without a corresponding external sound, is a frequent disorder which causes significant morbidity. So far there is no treatment available that reliably reduces the tinnitus perception. The research is hampered by the large heterogeneity of tinnitus and the fact that the tinnitus perception fluctuates over time. It is therefore necessary to develop tools for measuring fluctuations of tinnitus perception over time and for analyzing data on single subject basis. However, this type of longitudinal measurement is difficult to perform using the traditional research methods such as paper-and-pencil questionnaires or clinical interviews. Ecological momentary assessment (EMA) represents a research concept that allows the assessment of subjective measurements under real-life conditions using portable electronic devices and thereby enables the researcher to collect longitudinal data under real-life conditions and high cost efficiency. Here we present a new method for recording the longitudinal development of tinnitus perception using a modern smartphone application available for iOS and Android devices with no costs for the users. The TrackYourTinnitus (TYT) app is available and maintained since April 2014. A number of 857 volunteers with an average age of 44.1 years participated in the data collection between April 2014 and February 2016. The mean tinnitus distress at the initial measurement was rated on average 13.9 points on the Mini-Tinnitus Questionnaire (Mini-TQ; max. 24 points). Importantly, we could demonstrate that the regular use of the TYT app has no significant negative influence on the perception of the tinnitus loudness nor on the tinnitus distress. The TYT app can therefore be proposed as a safe instrument for the longitudinal assessment of tinnitus perception in the everyday life of the patient

    Memory-experience gap in early adolescents' happiness reports

    Get PDF
    Studies among adult populations show that estimates of how happy one has felt in the past tend to be more positive than average happiness as assessed using time sampling techniques. This ‘memory-experience gap’ is attributed to cognitive biases, among which fading affect bias. In this paper we report a study among 352 pupils of a secondary school in the Netherlands. These youngsters reported subsequently: 1) how happy they had felt yesterday, 2) how happy they had felt during the last month, 3) what they had done the previous day and 4) how the

    Electrophysiological measurements of peripheral vestibular function—A review of electrovestibulography

    Get PDF
    Electrocochleography (EcochG), incorporating the Cochlear Microphonic (CM), the Summating Potential (SP), and the cochlear Compound Action Potential (CAP), has been used to study cochlear function in humans and experimental animals since the 1930s, providing a simple objective tool to assess both hair cell (HC) and nerve sensitivity. The vestibular equivalent of ECochG, termed here Electrovestibulography (EVestG), incorporates responses of the vestibular HCs and nerve. Few research groups have utilized EVestG to study vestibular function. Arguably, this is because stimulating the cochlea in isolation with sound is a trivial matter, whereas stimulating the vestibular system in isolation requires significantly more technical effort. That is, the vestibular system is sensitive to both high-level sound and bone-conducted vibrations, but so is the cochlea, and gross electrical responses of the inner ear to such stimuli can be difficult to interpret. Fortunately, several simple techniques can be employed to isolate vestibular electrical responses. Here, we review the literature underpinning gross vestibular nerve and HC responses, and we discuss the nomenclature used in this field. We also discuss techniques for recording EVestG in experimental animals and humans and highlight how EVestG is furthering our understanding of the vestibular system

    Feasibility and utility of positive psychology exercises for suicidal inpatients

    Full text link
    ObjectiveThe objective was to assess the feasibility and acceptability of nine positive psychology exercises delivered to patients hospitalized for suicidal thoughts or behaviors, and to secondarily explore the relative impact of the exercises.MethodParticipants admitted to a psychiatric unit for suicidal ideation or behavior completed daily positive psychology exercises while hospitalized. Likert-scale ratings of efficacy (optimism, hopelessness, perceived utility) and ease of completion were consolidated and compared across exercises using mixed models accounting for age, missing data and exercise order. Overall effects of exercise on efficacy and ease were also examined using mixed models.ResultsFifty-two (85.3%) of 61 participants completed at least one exercise, and 189/213 (88.7%) assigned exercises were completed. There were overall effects of exercise on efficacy (χ(2)=19.39; P=.013) but not ease of completion (χ(2)=11.64; P=.17), accounting for age, order and skipped exercises. Effect (Cohen's d) of exercise on both optimism and hopelessness was moderate for the majority of exercises. Exercises related to gratitude and personal strengths ranked highest. Both gratitude exercises had efficacy scores that were significantly (P=.001) greater than the lowest-ranked exercise (forgiveness).ConclusionIn this exploratory project, positive psychology exercises delivered to suicidal inpatients were feasible and associated with short-term gains in clinically relevant outcomes

    Justified Belief

    No full text

    Biogeochemical transformation of Fe minerals in a petroleum-contaminated aquifer

    Get PDF
    The Bemidji aquifer in Minnesota, USA is a well-studied site of subsurface petroleum contamination. The site contains an anoxic groundwater plume where soluble petroleum constituents serve as an energy source for a region of methanogenesis near the source and bacterial Fe(III) reduction further down gradient. Methanogenesis apparently begins when bioavailable Fe(III) is exhausted within the sediment. Past studies indicate that Geobacter species and Geothrix fermentens–like organisms are the primary dissimilatory Fe-reducing bacteria at this site. The Fe mineralogy of the pristine aquifer sediments and samples from the methanogenic (source) and Fe(III) reducing zones were characterized in this study to identify microbiologic changes to Fe valence and mineral distribution, and to identify whether new biogenic mineral phases had formed. Methods applied included X-ray diffraction; X-ray fluorescence (XRF); and chemical extraction; optical, transmission, and scanning electron microscopy; and Mössbauer spectroscopy. All of the sediments were low in total Fe content (≈ 1%) and exhibited complex Fe-mineralogy. The bulk pristine sediment and its sand, silt, and clay-sized fractions were studied in detail. The pristine sediment and its sand, silt, and clay-sized fractions were studied in detail. The pristine sediments contained Fe(II) and Fe(III) mineral phases. Ferrous iron represented approximately 50% of FeTOT. The relative Fe(II) concentration increased in the sand fraction, and its primary mineralogic residence was clinochlore with minor concentrations found as a ferroan calcite grain cement in carbonate lithic fragments. Fe(III) existed in silicates (epidote, clinochlore, muscovite) and Fe(III) oxides of detrital and authigenic origin. The detrital Fe(III) oxides included hematite and goethite in the form of mm-sized nodular concretions and smaller-sized dispersed crystallites, and euhedral magnetite grains. Authigenic Fe(III) oxides increased in concentration with decreasing particle size through the silt and clay fraction. Chemical extraction and Mössbauer analysis indicated that this was a ferrihydrite like-phase. Quantitative mineralogic and Fe(II/III) ratio comparisons between the pristine and contaminated sediments were not possible because of textural differences. However, comparisons between the texturally-similar source (where bioavailable Fe(III) had been exhausted) and Fe(III) reducing zone sediments (where bioavailable Fe(III) remained) indicated that dispersed detrital, crystalline Fe(III) oxides and a portion of the authigenic, poorly crystalline Fe(III) oxide fraction had been depleted from the source zone sediment by microbiologic activity. Little or no effect of microbiologic activity was observed on silicate Fe(III). The presence of residual “ferrihydrite” in the most bioreduced, anoxic plume sediment (source) implied that a portion of the authigenic Fe(III) oxides were biologically inaccessible in weathered, lithic fragment interiors. Little evidence was found for the modern biogenesis of authigenic ferrous-containing mineral phases, perhaps with the exception of thin siderite or ferroan calcite surface precipitates on carbonate lithic fragments within source zone sediments

    Biogeochemical transformation of Fe minerals in a petroleum-contaminated aquifer

    Get PDF
    The Bemidji aquifer in Minnesota, USA is a well-studied site of subsurface petroleum contamination. The site contains an anoxic groundwater plume where soluble petroleum constituents serve as an energy source for a region of methanogenesis near the source and bacterial Fe(III) reduction further down gradient. Methanogenesis apparently begins when bioavailable Fe(III) is exhausted within the sediment. Past studies indicate that Geobacter species and Geothrix fermentens–like organisms are the primary dissimilatory Fe-reducing bacteria at this site. The Fe mineralogy of the pristine aquifer sediments and samples from the methanogenic (source) and Fe(III) reducing zones were characterized in this study to identify microbiologic changes to Fe valence and mineral distribution, and to identify whether new biogenic mineral phases had formed. Methods applied included X-ray diffraction; X-ray fluorescence (XRF); and chemical extraction; optical, transmission, and scanning electron microscopy; and Mössbauer spectroscopy. All of the sediments were low in total Fe content ( ≈1%) and exhibited complex Fe-mineralogy. The bulk pristine sediment and its sand, silt, and clay-sized fractions were studied in detail. The pristine sediments contained Fe(II) and Fe(III) mineral phases. Ferrous iron represented approximately 50% of FeTOT. The relative Fe(II) concentration increased in the sand fraction, and its primary mineralogic residence was clinochlore with minor concentrations found as a ferroan calcite grain cement in carbonate lithic fragments. Fe(III) existed in silicates (epidote, clinochlore, muscovite) and Fe(III) oxides of detrital and authigenic origin. The detrital Fe(III) oxides included hematite and goethite in the form of mm-sized nodular concretions and smaller-sized dispersed crystallites, and euhedral magnetite grains. Authigenic Fe(III) oxides increased in concentration with decreasing particle size through the silt and clay fraction. Chemical extraction and Mössbauer analysis indicated that this was a ferrihydrite like-phase. Quantitative mineralogic and Fe(II/III) ratio comparisons between the pristine and contaminated sediments were not possible because of textural differences. However, comparisons between the texturally-similar source (where bioavailable Fe(III) had been exhausted) and Fe(III) reducing zone sediments (where bioavailable Fe(III) remained) indicated that dispersed detrital, crystalline Fe(III) oxides and a portion of the authigenic, poorly crystalline Fe(III) oxide fraction had been depleted from the source zone sediment by microbiologic activity. Little or no effect of microbiologic activity was observed on silicate Fe(III). The presence of residual “ferrihydrite” in the most bioreduced, anoxic plume sediment (source) implied that a portion of the authigenic Fe(III) oxides were biologically inaccessible in weathered, lithic fragment interiors. Little evidence was found for the modern biogenesis of authigenic ferrous-containing mineral phases, perhaps with the exception of thin siderite or ferroan calcite surface precipitates on carbonate lithic fragments within source zone sediments

    Priming for Performance: Valence of Emotional Primes Interact with Dissociable Prototype Learning Systems

    Get PDF
    Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB) and one-prototype (AN) prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning.This research was supported by a National Institutes of Health Grant R01 MH077708 and NIDA grant DA032457 to WTM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Psycholog
    • 

    corecore