103 research outputs found

    Counterintuitive Roles of Experience and Weather on Migratory Performance

    Get PDF
    Migration allows animals to live in resource-rich but seasonally variable environments. Because of the costs of migration, there is selective pressure to capitalize on variation in weather to optimize migratory performance. To test the degree to which migratory performance (defined as speed of migration) of Golden Eagles (Aquila chrysaetos) was determined by age- and season-specific responses to variation in weather, we analyzed 1,863 daily tracks (n = 83 migrant eagles) and 8,047 hourly tracks (n = 83) based on 15 min GPS telemetry data from Golden Eagles and 277 hourly tracks based on 30 s data (n = 37). Spring migrant eagles traveled 139.75 ± 82.19 km day-1 (mean 6 SE; n = 57) and 25.59 ± 11.75 km hr-1 (n = 55). Autumn migrant eagles traveled 99.14 ± 59.98 km day-1 (n = 26) and 22.18 ± 9.18 km hr-1 (n = 28). Weather during migration varied by season and by age class. During spring, best-supported daily and hourly models of 15 min data suggested that migratory performance was influenced most strongly by downward solar radiation and that older birds benefited less from flow assistance (tailwinds). During autumn, best-supported daily and hourly models of 15 min data suggested that migratory performance was influenced most strongly by south–north winds and by flow assistance, again less strongly for older birds. In contrast, models for hourly performance based on data collected at 30 s intervals were not well described by a single model, likely reflecting eagles’ rapid responses to the many weather conditions they experienced. Although daily speed of travel was similar for all age classes, younger birds traveled at faster hourly speeds than did adults. Our analyses uncovered strong, sometimes counterintuitive, relationships among weather, experience, and migratory flight, and they illustrate the significance of factors other than age in determining migratory performance

    Limited rigor in studies of raptor mortality and mitigation at wind power facilities

    Get PDF
    Wind power is an expanding source of renewable energy. However, there are ecological challenges related to wind energy generation, including collisions of wildlife with turbines. Lack of rigor, and variation in study design, together limit efforts to understand the broad-scale effects of wind power infrastructure on wildlife populations. It is not clear, however, whether these types of limitations apply to groups of birds such as raptors that are particularly vulnerable to negative effects of wind energy. We reviewed 672 peer-reviewed publications, unpublished reports, and citations from 321 wind facilities in 12 countries to evaluate methods used to monitor and mitigate for wind facility impacts on raptors. Most reports that included raptor monitoring (86 %, n = 461) only conducted post-construction monitoring for raptor fatalities, while few (12 %; n = 65) estimated preconstruction raptor use. Only 27 % of facilities (n = 62) provided estimates of fatalities or raptor use across multiple construction phases, and the percentage of facilities with data available from multiple construction periods has not changed over time. A formal experimental study design was incorporated into surveys at only 29 % of facilities. Finally, mitigation practices to reduce impacts on raptors were only reported at 23 % of facilities. Our results suggest that rigorous data collection on wind energy impacts to raptors is rare, and that mitigation of detrimental effects is seldom reported. Expanding the use of rigorous research approaches and increasing data availability would improve understanding of the regional and global effects of wind energy on raptor populations

    Illegal Shooting is Now a Leading Cause of Death of Birds Along Power Lines in the Western USA

    Get PDF
    Human actions, both legal and illegal, affect wildlife in many ways. Inaccurate diagnosis of cause of death undermines law enforcement, management, threat assessment, and mitigation. We found 410 dead birds collected along 196 km of power lines in four western USA states during 2019–2022. We necropsied these carcasses to test conventional wisdom suggesting that electrocution is the leading cause of death of birds at electrical infrastructure. Of 175 birds with a known cause of death, 66% died from gunshot. Both raptors and corvids were more likely to die from gunshot than from other causes, along both transmission and distribution lines. Past mitigation to reduce avian deaths along power lines has focused almost exclusively on reducing electrocutions or collisions. Our work suggests that, although electrocution and collision remain important, addressing illegal shooting now may have greater relevance for avian conservation

    Drivers of Flight Performance of California Condors (\u3cem\u3eGymnogyps californianus\u3c/em\u3e)

    Get PDF
    Flight behavior of soaring birds depends on a complex array of physiological, social, demographic, and environmental factors. California Condors (Gymnogyps californianus) rely on thermal and orographic updrafts to subsidize extended bouts of soaring flight, and their soaring flight performance is expected to vary in response to environmental variation and, potentially, with experience. We collected 6298 flight tracks described by high-frequency GPS telemetry data from five birds ranging in age from 1 to 19 yr old and followed over 32 d in summer 2016. Using these data, we tested the hypothesis that climb rate, an indicator of flight performance, would be related to the topographic and meteorological variables the bird experienced, and also to its age. Climb rate was greater when condors were flying in faster winds and during environmental conditions that were conducive to updraft development. However, we found no effect of age on climb rate. Although many of these relationships were expected based on flight theory, the lack of an effect of age was unexpected. Our work expands understanding of the relationship condors have with the environment, and it also suggests the potential for as-yet unexplored complexity to this relationship. As such, this study provides insight into avian flight behavior and, because flight performance influences bird behavior and exposure to anthropogenic risk, it has potential consequences for development of conservation management plans

    Influence of Anthropogenic Subsidies on Movements of Common Ravens

    Get PDF
    Anthropogenic subsidies can benefit populations of generalist predators such as common ravens (ravens; Corvus corax), which in turn may depress populations of many types of species at lower-trophic levels, including desert tortoises (Gopherus agassizii) or greater sage-grouse (Centrocercus urophasianus). Management of subsidized ravens often has targeted local breeding populations that are presumed to affect species of concern and ignored “urban” populations of ravens. However, little is known about how ravens move, especially in response to the presence of anthropogenic subsidies. Therefore, subsidized ravens from distant populations that are not managed may influence local prey. To better understand this issue, we deployed global positioning system – global system for mobile communications transmitters to track movements of 19 ravens from September to December 2020 relative to 2 land cover types that provide subsidies: developed areas and cultivated crops. On average, ravens moved 41.5 km (±30.5) per day, although daily movement distances ranged from 0.13–206.1 km. Raven movement among cover types during the non-breeding season varied widely, with 100% of individuals each using land cover types that provide subsidy and other types at least once in the season. On 100% of days ravens used areas that did not provide subsidy, on 86.7% of days they used developed areas, and on 20.5% of days they used cultivated crops. Although on some days a raven would stay exclusively in areas that did not provide subsidy, there were no days in which a single raven ever stayed exclusively in developed or cultivated crops. Ravens moved shorter distances on days when they used subsidies more frequently. Further, time spent in developed areas and cultivated crops increased when ravens roosted closer to them, although this effect was greater for developed areas than for cultivated crops. Individual ravens were not associated exclusively with either of the subsidy-providing landscapes we considered, but instead all birds used both subsidized and other landscapes. Our research suggests that management of ravens during the non-breeding season and possibly during the breeding season, intended to reduce risk of predation on desert tortoises, will be most effective if conducted on a broad scale because of distances the birds travel and the lack of separation between putative “urban” and “natural” populations of ravens

    Genetic analyses reveal cryptic introgression in secretive marsh bird populations

    Get PDF
    Hybridization is common in bird populations but can be challenging for management, especially if one of the two parent species is of greater conservation concern than the other. King rails (Rallus elegans) and clapper rails (R. crepitans) are two marsh bird species with similar morphologies, behaviors, and overlapping distributions. The two species are found along a salinity gradient with the king rail in freshwater marshes and the clapper in estuarine marshes. However, this separation is not absolute; they are occasionally sympatric, and there are reports of interbreeding. In Virginia, USA, both king and clapper rails are identified by the state as Species of Greater Conservation Need, although clappers are thought to be more abundant and king rails have a higher priority ranking. We used a mitochondrial DNA marker and 13 diagnostic nuclear single nucleotide polymorphisms (SNPs) to identify species, classify the degree of introgression, and explore the evolutionary history of introgression in two putative clapper rail focal populations along a salinity gradient in coastal Virginia. Genetic analyses revealed cryptic introgression with site‐specific rates of admixture. We identified a pattern of introgression where clapper rail alleles predominate in brackish marshes. These results suggest clapper rails may be displacing king rails in Virginia coastal waterways, most likely as a result of ecological selection. As introgression can result in various outcomes from outbreeding depression to local adaptation, continued monitoring of these populations would allow further exploration of hybrid fitness and inform conservation management

    State-space modelling of the flight behaviour of a soaring bird provides new insights to migratory strategies

    Get PDF
    Characterising the spatiotemporal variation of animal behaviour can elucidate the way individuals interact with their environment and allocate energy. Increasing sophistication of tracking technologies paired with novel analytical approaches allows the characterisation of movement dynamics even when an individual is not directly observable. In this study, high-resolution movement data collected via global positioning system (GPS) tracking in three dimensions were paired with topographical information and used in a Bayesian state-space model to describe the flight modes of migrating golden eagles (Aquila chrysaetos) in eastern North America. Our model identified five functional behavioural states, two of which were previously undescribed variations on thermal soaring. The other states comprised gliding, perching and orographic soaring. States were discriminated by movement features in the horizontal (step length and turning angle) and vertical (change in altitude) planes and by the association with ridgelines promoting wind deflection. Tracked eagles spent 2%, 31%, 38%, 9% and 20% of their daytime in directed thermal soaring, gliding, convoluted thermal soaring, perching and orographic soaring, respectively. The analysis of the relative occurrence of these flight modes highlighted yearly, seasonal, age, individual and sex differences in flight strategy and performance. Particularly, less energy-efficient orographic soaring was more frequent in autumn, when thermals were less available. Adult birds were also better at optimising energy efficiency than subadults. Our approach represents the first example of a state-space model for bird flight mode using altitude data in conjunction with horizontal locations and is applicable to other flying organisms where similar data are available. The ability to describe animal movements in a three-dimensional habitat is critical to advance our understanding of the functional processes driving animalsĂą decisions. A plain language summary is available for this article

    Using post-release monitoring data to optimize avian reintroduction programs: a 2-year case study from the Brazilian Atlantic Rainforest

    Get PDF
    Abstract Post-release monitoring data of reintroduced captive-bred birds can be utilized to help optimize future avian reintroduction programs. We present a case study of broad interest to reintroduction and conservation biologists interested in investigating movements and habitat use by reintroduced captive-bred birds. We used radio telemetry to monitor reintroduced captive-bred red-billed curassow Crax blumenbachii at a private reserve, Rio de Janeiro state, Brazil. During August 2006 and October 2008, 25 radio-tagged individuals (15 females and 10 males, all o30 months old) were monitored over a 25-month period. Evaluation of home-range size and habitat use revealed that captive-bred curassows should be released only into forest areas with adequate riverine habitat that are larger than the minimum home-range movements of the proposed population. Curassows also utilized pastureland, cultivated areas and secondary forests, suggesting that the proximity of release sites to such habitats may not be entirely detrimental for future reintroductions. Site fidelity for reintroduced birds was low, and there was a tendency for resident curassows to move away when new cohorts were released into the area. Determining how habitat characteristics, displacement by newly released cohorts, adjustments to their new surroundings or cohort social interactions influence post-release movements of resident birds at release sites over prolonged time frames would improve our knowledge on the impacts of releasing further captive-bred individuals into habitats with extant populations. Critically, the movement patterns of reintroduced curassows identified in this study demonstrate that avian post-release monitoring must be considered over an appropriate time frame and we highlight how different conclusions may be generated depending on the duration of post-release monitoring. It may take more than 2 years for reintroduced captive-bred sub-adults to become established following release and that post-release monitoring of similar duration may not be adequate for large avian species such as Cracids

    Raptor Interactions with Wind Energy: Case Studies from Around the World

    Get PDF
    The global potential for wind power generation is vast, and the number of installations is increasing rapidly. We review case studies from around the world of the effects on raptors of wind-energy development. Collision mortality, displacement, and habitat loss have the potential to cause population-level effects, especially for species that are rare or endangered. The impact on raptors has much to do with their behavior, so careful siting of wind-energy developments to avoid areas suited to raptor breeding, foraging, or migration would reduce these effects. At established wind farms that already conflict with raptors, reduction of fatalities may be feasible by curtailment of turbines as raptors approach, and offset through mitigation of other human causes of mortality such as electrocution and poisoning, provided the relative effects can be quantified. Measurement of raptor mortality at wind farms is the subject of intense effort and study, especially where mitigation is required by law, with novel statistical approaches recently made available to improve the notoriously difficult-to-estimate mortality rates of rare and hard-to-detect species. Global standards for wind farm placement, monitoring, and effects mitigation would be a valuable contribution to raptor conservation worldwide.publishedVersio
    • 

    corecore