4,108 research outputs found

    GRTS and Graphs: Monitoring Natural Resources in Urban Landscapes

    Get PDF
    Environmental monitoring programs are an important tool for providing land managers with a scientific basis for management decisions. However, many ecological processes operate on spatial scales that transcend management boundaries (Schonewald-Cox 1988). For example, adjacent lands may influence protected-area resources via edge effects, source-sink dynamics, or invasion processes (Jones et al. 2009). Hydrologic alterations outside management units also may have profound effects on the integrity of resources being managed (Pringle 2000). The impacts of climate change are presenting challenges to resource management at local-to-global scales (Karl et al. 2009). This potential disparity between ecological and political boundaries presents an interesting dilemma for natural resource monitoring and is readily apparent in urban and agricultural environments, which tend to be dominated by external stressors (Collins et al. 2000). Despite their limited control over external land use, natural resource managers are concerned with processes such as development in the surrounding landscape, as these may lead to habitat loss and degradation that directly impair their resources. As a consequence, the management of the natural resources in and around parks and other areas requires a broad and dynamic understanding of the spatio-temporal patterns of environmental change. If monitoring is to be successful in providing data that inform management, information about regional and landscape context should play a critical role in designing monitoring strategies

    Abstraction Layers for Scalable Microfluidic Biocomputers (Extended Version)

    Get PDF
    Microfluidic devices are emerging as an attractive technology for automatically orchestrating the reactions needed in a biological computer. Thousands of microfluidic primitives have already been integrated on a single chip, and recent trends indicate that the hardware complexity is increasing at rates comparable to Moore's Law. As in the case of silicon, it will be critical to develop abstraction layers--such as programming languages and Instruction Set Architectures (ISAs)--that decouple software development from changes in the underlying device technology.Towards this end, this paper presents BioStream, a portable language for describing biology protocols, and the Fluidic ISA, a stable interface for microfluidic chip designers. A novel algorithm translates microfluidic mixing operations from the BioStream layer to the Fluidic ISA. To demonstrate the benefits of these abstraction layers, we build two microfluidic chips that can both execute BioStream code despite significant differences at the device level. We consider this to be an important step towards building scalable biocomputers

    Paper Session II-A - Biomedical Applications from Microgravity Experiments Flown on the CMIX Commercial Shuttle Flights

    Get PDF
    NASA\u27s initiatives to encourage the US private sector to invest in space hardware, products, and services are approximately 10 years old. These initiatives have worked and have encouraged the private sector to invest in commercial space projects. 1be Office of Advanced Concepts and Technology (formally NASA\u27s Office of Commercial Programs) has over the years initiated several innovative programs to provide access to space for commercial entities having developed their own hardware with private sector resources. These innovative agreements range from direct pay to fly agreements to barter arrangements with a commercial entity. The purp:lse of this paper is to present an overview of the QJmmercial ,MDA ff A E.EJerimems (CMIX) Program, which has flown two Space Shuttle missions during the past 16 months. The paper will show typical data results of new biomedical applications that can be obtained from space processing operations that can be a benefit to the US

    An Entomopathogenic Nematode by Any Other Name

    Get PDF
    Among the diversity of insect-parasitic nematodes, entomopathogenic nematodes (EPNs) are distinct, cooperating with insect-pathogenic bacteria to kill insect hosts. EPNs have adapted specific mechanisms to associate with and transmit bacteria to insect hosts. New discoveries have expanded this guild of nematodes and refine our understanding of the nature and evolution of insect–nematode associations. Here, we clarify the meaning of “entomopathogenic” in nematology and argue that EPNs must rapidly kill their hosts with the aid of bacterial partners and must pass on the associated bacteria to future generations

    Scientific Visualization Using the Flow Analysis Software Toolkit (FAST)

    Get PDF
    Over the past few years the Flow Analysis Software Toolkit (FAST) has matured into a useful tool for visualizing and analyzing scientific data on high-performance graphics workstations. Originally designed for visualizing the results of fluid dynamics research, FAST has demonstrated its flexibility by being used in several other areas of scientific research. These research areas include earth and space sciences, acid rain and ozone modelling, and automotive design, just to name a few. This paper describes the current status of FAST, including the basic concepts, architecture, existing functionality and features, and some of the known applications for which FAST is being used. A few of the applications, by both NASA and non-NASA agencies, are outlined in more detail. Described in the Outlines are the goals of each visualization project, the techniques or 'tricks' used lo produce the desired results, and custom modifications to FAST, if any, done to further enhance the analysis. Some of the future directions for FAST are also described

    Multistage Electrophoretic Separators

    Get PDF
    A multistage electrophoresis apparatus has been invented for use in the separation of cells, protein molecules, and other particles and solutes in concentrated aqueous solutions and suspensions. The design exploits free electrophoresis but overcomes the deficiencies of prior free-electrophoretic separators by incorporating a combination of published advances in mathematical modeling of convection, sedimentation, electro-osmotic flow, and the sedimentation and aggregation of droplets. In comparison with other electrophoretic separators, these apparatuses are easier to use and are better suited to separation in relatively large quantities characterized in the art as preparative (in contradistinction to smaller quantities characterized in the art as analytical). In a multistage electrophoretic separator according to the invention, an applied vertical steady electric field draws the electrically charged particles of interest from within a cuvette to within a collection cavity that has been moved into position of the cuvette. There are multiple collection cavities arranged in a circle; each is aligned with the cuvette for a prescribed short time. The multistage, short-migration-path character of the invention solves, possibly for the first time, the fluid-instability problems associated with free electrophoresis. The figure shows a prototype multistage electrophoretic separator that includes four sample stations and five collection stages per sample. At each sample station, an aqueous solution or suspension containing charged species to be separated is loaded into a cuvette, which is machined into a top plate. The apparatus includes a lower plate, into which 20 collection cavities have been milled. Each cavity is filled with an electrophoresis buffer solution. For the collection of an electrophoretic fraction, the lower plate is rotated to move a designated collection cavity into alignment with the opening of the cuvette. An electric field is then applied between a non-gassing electrode in the collection cavity and an electrolyte compartment, which is separated from the cuvette by a semipermeable membrane. The electrolyte is refreshed by circulation by use of a peristaltic pump. In subsequent steps, the lower plate is rotated to collect other electrophoretic fractions. Later, the collected fractions are removed from the collection cavities through ports that have threaded plugs. The base of the apparatus contains power supplies and a computer interface. The design includes provisions for monitoring and feedback control of cavity position, electric field, and temperature. The operation of the apparatus can easily be automated, as demonstrated by use of software that has already been written for this purpose

    The New Economics of Livestock Production Management

    Get PDF
    The importance of heterogeneity of animal attributes in livestock production is assessed. Preliminary results indicate that variance and skew measures of attributes may be becoming more important over time.livestock economics, herd management, livestock marketing, Livestock Production/Industries, Marketing,

    Column-free optical deconvolution of intrinsic fluorescence for a monoclonal antibody and its product-related impurities

    Get PDF
    The quantification of monoclonal antibody (mAb) aggregates and fragments using high pressure liquid chromatography-size exclusion chromatography (HPLC-SEC) typically requires off-line measurements that are time-consuming and therefore not compatible with real-time monitoring. However, it has been crucial to manufacturing and process development, and remains the industrial standard in the assessment of product-related impurities. Here we demonstrate that our previously established intrinsic time-resolved fluorescence (TRF) approach can be used to quantify the bioprocess critical quality attribute (CQA) of antibody product purity at various stages of a typical downstream process, with the potential to be developed for in-line bioprocess monitoring. This was directly benchmarked against industry-standard HPLC-SEC. Strong linear correlations were observed between outputs from TRF spectroscopy and HPLC-SEC, for the monomer and aggregate-fragment content, with R2 coefficients of 0.99 and 0.69, respectively. At total protein concentrations above 1.41 mg/mL, HPLC-SEC UV-Vis chromatograms displayed signs of detector saturation which reduced the accuracy of protein quantification, thus requiring additional sample dilution steps. By contrast, TRF spectroscopy increased in accuracy at these concentrations due to higher signal-to-noise ratios. Our approach opens the potential for reducing the time and labour required for validating aggregate content in mAb bioprocess stages from the several hours required for HPLC-SEC to a few minutes per sample

    Using productivity and susceptibility indices to assess the vulnerability of United States fish stocks to overfishing

    Get PDF
    Assessing the vulnerability of stocks to fishing practices in U.S. federal waters was recently highlighted by the National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration, as an important factor to consider when 1) identifying stocks that should be managed and protected under a fishery management plan; 2) grouping data-poor stocks into relevant management complexes; and 3) developing precautionary harvest control rules. To assist the regional fishery management councils in determining vulnerability, NMFS elected to use a modified version of a productivity and susceptibility analysis (PSA) because it can be based on qualitative data, has a history of use in other fisheries, and is recommended by several organizations as a reasonable approach for evaluating risk. A number of productivity and susceptibility attributes for a stock are used in a PSA and from these attributes, index scores and measures of uncertainty are computed and graphically displayed. To demonstrate the utility of the resulting vulnerability evaluation, we evaluated six U.S. fisheries targeting 162 stocks that exhibited varying degrees of productivity and susceptibility, and for which data quality varied. Overall, the PSA was capable of differentiating the vulnerability of stocks along the gradient of susceptibility and productivity indices, although fixed thresholds separating low-, moderate-, and highly vulnerable species were not observed. The PSA can be used as a flexible tool that can incorporate regional-specific information on fishery and management activity

    Evacuated Airship for Mars Missions: NIAC Phase I, 2017

    Get PDF
    An evacuated or vacuum airship relies on the same principle of buoyancy used by standard balloons. However, unlike a balloon which uses a lighter than air gas to displace air and provide lift, the vacuum airship leverages a rigid structure to maintain a vacuum and displace air, thereby providing buoyancy. This method is similar to how a ship uses a rigid structure to displace water and fill the space with air; an evacuated airship uses the same mechanism, except air is displaced and the space remains vacant. Using this method, the evacuated airship is capable of utilizing the full potential of the displaced mass of air, which has interesting implications in the Martian atmosphere. Unlike other aerial vehicles, which are at a disadvantage in Martian atmospheric conditions, the evacuated airship benefits from the Martian atmosphere by virtue of the temperature and molecular composition. As a result, the evacuated airship offers an unprecedented payload capacity and, if implemented, may be used to transport current and future scientific instruments, other vehicles, rovers, and possibly even human habitations. A standard dirigible or balloon for Mars would have a severely limited span of operation and a very narrow field of study, nearly exclusively the atmosphere, but a vacuum airship can be used as a long term tool for many different missions: transportation, ground study, communications, atmospheric study, etcetera, thereby making it a far more economically sensible choic
    corecore