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Executive Summary 
 An evacuated or vacuum airship relies on the same principle of buoyancy used by 

standard balloons.  However, unlike a balloon which uses a lighter than air gas to displace air 

and provide lift, the vacuum airship leverages a rigid structure to maintain a vacuum and displace 

air, thereby providing buoyancy.  This method is similar to how a ship uses a rigid structure to 

displace water and fill the space with air; an evacuated airship uses the same mechanism, except 

air is displaced and the space remains vacant.  Using this method, the evacuated airship is 

capable of utilizing the full potential of the displaced mass of air, which has interesting 

implications in the Martian atmosphere.  Unlike other aerial vehicles, which are at a 

disadvantage in Martian atmospheric conditions, the evacuated airship benefits from the Martian 

atmosphere by virtue of the temperature and molecular composition.  As a result, the evacuated 

airship offers an unprecedented payload capacity and, if implemented, may be used to transport 

current and future scientific instruments, other vehicles, rovers, and possibly even human 

habitations.  A standard dirigible or balloon for Mars would have a severely limited span of 

operation and a very narrow field of study, nearly exclusively the atmosphere, but a vacuum 

airship can be used as a long term tool for many different missions: transportation, ground study, 

communications, atmospheric study, etcetera, thereby making it a far more economically 

sensible choice.   

 This investigation illustrates development of several different approaches to the 

evacuated airship which are dictated by different enabling technologies as well as those viable 

with current technology.   For current materials technology, this investigation has addressed and 

solved the most core feasibility aspects of the concept, laying the foundation for further 

development of the mission and design.  The current design of the evacuated airship uses a 

tensegrity structure, which is a truss structure comprised of bars in pure compression and cables 

in pure tension, to support an outer membrane.  Beams of the tensegrity structure themselves are 

comprised of more intricate tensegrity structures, which reduce the overall mass of the design, 

enabling payload capacity.  As such, this design is fully capable of supporting the load from 

atmospheric pressure on Mars while remaining light enough to have useful payload capacity, 

which was testing using detailed, non-linear finite element simulations, accounting for non-

linearities in displacement, global and local buckling, and membrane failure criteria.  This was 

further improved by combining and extending several design methods to reduce the overall mass 

of the structure.  As can be shown, the current payload of the design is 500 kilograms, with 

projections through further implementation of the developed design methods to have a payload 

over one ton, and even more payload can be expected from further development of the design 

and mission.  There still remain many other avenues for further mass reduction of the structure 

and optimization of the design in general, which can be used in conjunction with the methods 

developed over this investigation.   

 Additionally, protocols for the fundamentals of a mission implementing the evacuated 

airship on Mars are examined in this investigation.  These protocols cover the transport, 

deployment, and planetary insertion of the evacuated airship on Mars, which are the main criteria 

for mission feasibility.  Planetary insertion was analyzed using high fidelity numerical methods 

to observe the full scope of influences on the evacuated airship during entry into the atmosphere.  

As a result, the underlying analysis behind the installation of the evacuated airship on Mars has 

been covered sufficiently and provides a general framework which is fully capable of 

conforming to future changes and adaptations to the design.   
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 Overall, the evacuated airship represents an exciting and revolutionary concept for Mars 

and will enable missions which would otherwise be impossible.  Not to mention, a vast majority 

of the structural methods and theory developed for the evacuated airship can be applied to many 

other projects which solicit high load bearing capability, low mass, and/or deployability—

terrestrial, Martian, or otherwise.  The results of this investigation are foundational and should 

not be considered final.  There are still many aspects of the evacuated airship concept which 

need to be further developed, however, this research covers the main points of feasibility for the 

concept.  
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Planetary Analysis 
 Earth’s atmosphere is fairly adversarial towards the concept of an evacuated airship.  

However, the Martian atmosphere can be shown to be very well situated, by virtue of Mars’ 

temperature and atmospheric composition, to be a prime candidate for implementation of the 

evacuated airship.  Additionally, the evacuated airship represents an unparalleled advance in 

mission capabilities on Mars once implemented.  The following analysis generalizes the 

advantageous nature of the Martian atmosphere as applied to the evacuated airship concept.    

 Using the statics of the vacuum airship and drastically simplified models, a preliminary 

mathematical model of the system may be created.  Based on Archimedes’ principle: in 

equilibrium, the mass of a system is equivalent to the mass of the volume of fluid displaced; 

therefore the lift of the vacuum airship is a function of the volume displaced, demonstrated in 

Figure 1.1 and Equation 1.1.  By taking a differential section of the design shown in Figure 1.1, 

and applying statics (as shown in Figure 1.2), the stress in the shell can be found, shown in 

Equation 1.2.  Taking the ratio of stress to lift by combining and simplifying Equations 1.1 and 

1.2, the relation shown in Equation 1.3 can be derived to reveal the nature of the basic vacuum 

airship properties.   

 
 

𝐿 = 𝜌𝑎𝑡𝑚𝑉 = 𝜌𝑎𝑡𝑚
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 Additionally, for a non-monocoque design utilizing beams of circular cross section as 

illustrated in Figure 1.3, the lift is again proportional to the volume displaced as shown in 

Equation 1.4.  Stresses in the supporting beams can be found from statics, taking the summation 

of pressure over each face and applying an equivalent force, based on angle, to the beam 

connected to that face, resulting in Equation 1.5.  As before, by taking the ratio of stress to lift by 

combining Equations 1.4 and 1.5, the relation represented in Equation 1.6 is derived, which 

shows similar relationships as Equation 1.3.  Since the thickness of beam or shell of each design 

is determined by the material and the size determined by scale, then the atmospheric density and 

pressure become the elements of interest for this preliminary analysis. 
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Figure 1.3 
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  To this end, we studied the effects of atmospheric density and pressure on the efficiency 

of the airship.  Starting with the ideal gas law, using the definition of density as the quotient of 

mass by volume, and the definition of molar mass as the ratio of mass per mole, a relationship 

for the ratio of pressure to density can be found to be proportional to the ratio between 

temperature and average molecular mass.  From this derivation and by the observations made 

above, one can see a specific atmosphere’s suitability for the vacuum airship is a function of the 

temperature and the molecular mass of the atmosphere, specifically the quotient of the two.   

 Since benefit may come from the design having a non-spherical or non-cubic form, and 

since the above models are exceedingly simplified, generalizing the previous relations to an 

arbitrary body is necessary.  Such generalization can be accomplished by first taking an arbitrary 

body defined in frame e1, e2, e3, and performing a change of basis to frame e1’, e2’, e3’, where ei 

= α ei’, for i = 1, 2, 3, which is equivalent to changing the size of the body.  This change of 

frame is shown in Figure 1.4 as it would apply to scaling an arbitrary body.  The transformation 

is also represented in Equation 1.7 using a transformation matrix which in turn is represented in 

Equation 1.8. 
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𝑒𝑖
′ = 𝑙𝑖𝑗𝑒𝑗 (1.7) 

𝑙𝑖𝑗 =
1

𝛼
𝛿𝑖𝑗 (1.8) 

 The relationship between volume before and after the transformation is shown in 

Equation 1.9 and the same is shown for the surface area in Equation 1.10.  Defining a specific 

transformation into a body with unit volume allows definition of α0 for specific body geometry.  

Solving for the value of the aforementioned α0 yields Equation 1.11 where A0 is a constant: the 

surface area of an equivalently shaped body of unit volume.  Therefore, for any two arbitrary 

bodies of equivalent volume, their surface areas are constantly proportional, regardless of scale.   

 

𝑉 =∭𝜀𝑖𝑗𝑘𝑑𝑥𝑖𝑑𝑦𝑗𝑑𝑧𝑘 = 𝛼
3𝑉′ (1.9) 

𝐴 =∬√𝜀𝑖𝑗𝑘𝑑𝑥𝑗𝑑𝑦𝑘𝜀𝑖𝑚𝑛𝑑𝑥𝑚𝑑𝑦𝑛 = 𝛼
2𝐴′ (1.10) 

𝐴

𝐴0
= 𝑉2 3⁄  (1.11) 

 From this conclusion, and seeing from above the stress scales with surface area and the 

lift scales with volume, then the suitability of an atmosphere can be generalized to any design of 

the vacuum airship as proportional to the quotient of the average temperature and the average 

molecular mass.  In essence, this conclusion allows application of the relation in general, even 

though the original models are far from the final form of the design.  Observing each of the 

planets in the solar system, this generalized relationship shows Mars to have the best atmosphere 

for implementation of the vacuum airship.   

 Mars having the most suitable atmosphere for the vacuum airship is quite remarkable, 

since the Martian atmosphere is a severe detriment to all other flight vehicle designs.  The 

Martian atmosphere is comprised almost entirely of carbon dioxide, so vehicles cannot use 

typical combustion fuels which require an atmospheric oxidizer.  Glider, plane, and helicopter 

designs are all hindered by the atmosphere of Mars due to the low Reynolds number and 

relatively low density.  Additionally, the vacuum airship provides benefit over other airship 

designs and superpressure balloons because of the inherent robustness of the design.  Moreover, 

if damage is sustained, the vacuum airship can land, be repaired, and the re-evacuate to resume 

operation, whereas another airship would need to be refilled with a lighter than air gas.  

Therefore, the evacuated airship design thrives in an environment where most other aircraft are 

at a disadvantage. 
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Design Iterations 
 The design of the evacuated airship for Mars missions has been a process consisting of 

many design iterations.  At onset, the simplest design possibilities were explored; when 

impossibilities were encountered, the design was modified by incorporation of new design 

technologies to mitigate the difficulties encountered with each iteration.  Each design iteration 

expands the applicable knowledge of the problem, and enables more informed design decisions 

moving forward, culminating in a design which is now solidly founded in both structure and 

fundamental mission aspects.   

 Initial analysis and design for the vacuum airship consisted of several monocoque designs 

which had differing approaches to providing the strength needed while remaining lightweight 

enough to enable flight.  The first design iteration using a homogeneous shell, though shown to 

be impossible given current materials, provided a reliable analytic foundation for later work.  In 

the following design iterations sandwich structures were used to check if the material constraints 

could be overcome in such a way.  These later iterations were closer to success, but again were 

found to be in feasible.  This in no way should be considered failure however because these 

designs, though unsuccessful on their own, helped to build analytic groundwork for the current 

design.  Additionally, the sandwich structure based designs are simply hindered by 

manufacturing constraints imposed by current materials technology.  As such, these designs are 

perfectly valid if and when materials technology advances to their points of manufacture.  

Furthermore, the sandwich structure designs may be preferable in the case where their material 

constraints are met since they have slightly higher theoretical payloads than the current design, 

though the current design is vastly more feasible with current technology. 

 

Homogeneous Shell 
 Simplest of the designs for an evacuated airship is a homogeneous monocoque shell.  The 

following analysis for a vacuum airship comprised of a homogeneous monocoque shell uses the 

model shown in Figure 2.1.  From this model, the accompanying equation (2.4) governing the 

buoyancy of the airship can be obtained.  In Equation 2.1, total mass for the system is calculated 

from the product of the shell volume and the material density in addition to an efficiency factor, 

which represents how far the vacuum is from absolute, and the payload.  An explicit 

representation of the efficiency factor is shown in Equation 2.2.  Mass displaced by the system is 

shown in Equation 2.3 as the product of the total system volume and the atmospheric density.  

By combining Equations 2.1 and 2.3, Equation 2.4 is obtained.   

 

 
Figure 2.1 
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 Taking a differential section of the above model, a model for analysis of the stresses on 

the shell can be created as shown in Figure 2.2 and 2.3.  Stresses in the shell can be obtained 

using static analysis, shown in Equation 2.5, of the forces acting on the differential section.  The 

stress in the shell, shown in Equation 2.6, can then be obtained by rearranging Equation 2.5 and 

assuming stresses are uniform along the X and Y directions. 

 

   
Figure 2.2     Figure 2.3 
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 Using the value found for stress (Equation 2.6) and the buckling equation for a spherical 

plate under uniform external pressure1, shown in Equation 2.7, leads to a representation of the 

critical buckling pressure for a homogeneous monocoque sphere (Equation 2.8).  Now, Equation 

2.4 can be reduced to Equation 2.9 by assuming neutral buoyancy, i.e. mass displaced equivalent 
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to the mass of the airship, and assuming a virtually perfect evacuation in addition to no payload.  

Equation 2.9 can subsequently be reduced to Equation 2.10, providing value for the required 

ratio of shell thickness to the radius imposed by neutral buoyancy.  By assuming minimum 

structure to support atmospheric pressure, the critical buckling pressure from Equation 2.8 

becomes atmospheric pressure.  Rearranging Equation 2.8 gives Equation 2.11 representing the 

ratio of shell thickness to the radius imposed by buckling.  Imposing the limitations from both 

buoyancy and buckling, Inequality 2.12 can be created. 

 

𝜎𝑐𝑟 =
𝐸

√3(1 − 𝜈2)

𝑡

𝑟
 (2.7) 
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3
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𝑡

𝑟
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√𝑃𝑎𝑡𝑚√3(1 − 𝜈
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2𝐸
≤ 1 +

(𝜌𝑎𝑡𝑚𝜌𝑠ℎ𝑒𝑙𝑙
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3 )1 3⁄
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  In searching material properties, the inability of current materials to satisfy Inequality 

2.12 becomes apparent for the atmospheric conditions on Mars.  Therefore, with current 

materials, a homogeneous shell design for the vacuum airship is infeasible.  There is very little 

likelihood of materials technology advancing far enough for these limitations to be surpassed 

since they are so extreme.  However, this analysis is still useful for other designs, as will be seen 

below.   

 

Sandwich Shell: Lattice 
 The next iteration of the evacuated airship’s design sought to find a solution to the 

problem of shell buckling while maintaining a lightweight design.  In order to increase resistance 

of the monocoque shell to buckling, a sandwich structure may be employed.  Said sandwich 

structure increases the effective stiffness of the material, which in turn reduces the susceptibility 

of the material to elastic instability, i.e. buckling.  The increase in effective stiffness is due to the 

spacing of two layers of material created by the addition of a core.  For the design discussed in 

this section, a core comprised of a lattice structure was chosen and subsequently analyzed.   
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 Extending the analysis performed for the homogenous shell, the forces acting on the 

sandwich shell can be represented as shown in Figure 3.1.  The shell equilibrium can be shown 

with Equation 3.1, which is very similar to the equilibrium equation developed for a 

homogeneous shell.  Rearranging Equation 3.1 and assuming both shell layers support the same 

stress gives Equation 3.2, representing the stress in the shell depending on the geometry and 

atmosphere.   

 

 
Figure 3.1 
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 To determine the load held by the lattice structure, Figure 3.1 must be modified slightly, 

shown in Figure 3.2, to account for the force transfer done by the lattice instead of simply 

assuming the load is transferred, as prior.  From the balance of forces in Figure 3.2, equilibrium 

can be represented by Equation 3.3, using much the same process as above.  Again, assuming 

both layers of material support the same stress, Equation 3.3 can be rearranged and subsequently 

combined with Equation 3.2 to represent the core stresses as shown in Equation 3.4.   
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Figure 3.2 
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 Additional consideration must be made to the lattice structure’s effective properties.  The 

lattice structure, in order to properly transmit the force between the inner and outer layers of the 

shell, must deform consistently with the other material layers.  This deformation can be seen in 

Figure 3.3, which shows a two-dimensional cross section of a differential portion of the shell in 

deformed and original forms.  From the Hooke’s law and the circumference of a circle, Equation 

3.5 can be derived to represent the outer layer’s deformation.  Using Equation 3.5, a formula for 

the deformed outer radius can be found, shown in Equation 3.6.  In much the same way, the 

deformed inner radius can be found, as shown in Equation 3.7.   
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𝜎

𝐸
=
𝑑𝑥′ − 𝑑𝑥

𝑑𝑥
= 2𝜋

𝑅2
′ − 𝑅2
𝑅2

 (3.5) 

𝑅2
′ = (
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2𝜋𝐸
+ 1)𝑅2 (3.6) 

𝑅1
′ = (

𝜎

2𝜋𝐸
+ 1)𝑅1 (3.7) 

 

 Using the definition of strain, the effective strain imposed on the lattice can be seen in 

Equation 3.8, substituting Equations 3.6 and 3.7 and simplifying.  Assuming the stresses in the 

lattice have approximately a linear distribution, Equation 3.8 can be used to create Equation 3.9 

from Hooke’s law.  Equation 3.9 can then be rearranged to give an expression for the effective 

stiffness of the lattice as imposed by the geometry and shell material properties, given in 

Equation 3.10.   
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𝐸𝑙𝑎𝑡𝑡𝑖𝑐𝑒
𝐸

𝜎

2𝜋
 (3.9) 

𝐸𝑙𝑎𝑡𝑡𝑖𝑐𝑒 =
2𝜋𝜎𝑖𝑛𝐸

𝜎
 (3.10) 

 

 The lattice geometry for this design was chosen to be a tetrahedral based lattice with unit 

cells as can be seen in Figure 3.4.  Definition for the geometry in relation to a single variable, a, 

can also be seen in the accompanying Equation 3.11.  From these, a full description of the cell 

volume can be obtained, as well as the material volume occupied by the lattice, supplemented 

with additional geometric constraints as will be shown. 

 

 
Figure 3.4 

𝑎 

𝑐 

𝜃 
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𝑏̂ =
4

√6
𝑎 (3.11) 

 

 In order to determine the effective deformation of a general lattice, the simple lattice 

model in two-dimensions shown in Figure 3.5 is used.  Assuming the lengths of all the members 

are equal with equal cross sectional areas and then balancing the forces for equilibrium results in 

the same force being applied to each member.  Consequently, the strains on each member are 

equivalent, as denoted in Equation 3.12.  Applying the definition of strain to the simple lattice’s 

total strain, replacing the terms with their components based on the geometry, and simplifying 

shows the strain on the entire lattice is equivalent to the strain experienced by the individual 

members, shown in Equation 3.13.  This analysis can be easily extended to the general case since 

the only assumptions made were the equal lengths and cross sectional areas of the members.  

Therefore, as long as angles between the members are all equal, then the strain equivalence will 

be true if the lattice is in equilibrium for both two- and three-dimensional lattice structures.   

 

 
Figure 3.5 

 

𝐹1 = 𝐹2 = 𝐹3 = 𝐹 

𝑙1 = 𝑙2 = 𝑙3 = 𝑙 

∴ 𝜀1 = 𝜀2 = 𝜀3 = 𝜀 

(3.12) 

  

𝜀𝑡𝑜𝑡𝑎𝑙 =
𝑙𝑡𝑜𝑡𝑎𝑙
′ − 𝑙𝑡𝑜𝑡𝑎𝑙
𝑙𝑡𝑜𝑡𝑎𝑙

=
[𝑙(1 + 𝜀) + 𝑙(1 + 𝜀) cos𝜔] − (𝑙 + 𝑙 cos𝜔)

(𝑙 + 𝑙 cos𝜔)
 

 

=
(1 + 𝜀)𝑙(1 + cos𝜔) − 𝑙(1 + cos𝜔)

𝑙(1 + cos𝜔)
= 𝜀 

(3.13) 

 

𝜔′ 

𝜔′ 
 

𝐹1 𝐹2 

𝐹3 

𝜋 − 𝜔 = 𝜔′ 
(𝜀𝑡𝑜𝑡𝑎𝑙 + 1)𝑙𝑡𝑜𝑡𝑎𝑙 
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 Using the geometry from Figure 3.4, the balance of forces on the lattice cell can be found 

in order to determine the forces on the lattice members.  The aforementioned balance of forces is 

shown in Equation 3.14.  Based on the geometry, the angle in Equation 3.14 can be described as 

shown in Equation 3.15.  From the combination of Equations 3.14 and 3.15, the stress on the 

lattice members can be represented as shown in Equation 3.16.  Knowing the stress on each 

lattice member permits the calculation of the strain of the members from Hooke’s law.  Due to 

the result in Equation 3.13, the strain in the members is equivalent to the strain in the lattice as a 

whole, which results in Equation 3.17 representing the lattice strain.  Since both the strain on the 

lattice and the stress supported by the lattice are defined, again, using Hooke’s law, the effective 

stiffness of the lattice, shown in Equation 3.18, can be resolved.  Combining this formula for 

effective stiffness with the previous representation of the effective stiffness of the lattice as 

necessitated by the force transfer between shell layers and rearranging results in Equation 3.19, 

defining the cross sectional area of the lattice members.   

 

2𝑏̂2𝜎𝑖𝑛 = 4𝐹𝑙𝑎𝑡𝑡𝑖𝑐𝑒 sin 𝜃 (3.14) 

𝜃 = cos−1
𝑏̂

2𝑎
= cos−1

4

√6
𝑎

2𝑎
= cos−1

2

√6
 

(3.15) 

𝜎𝑙𝑎𝑡𝑡𝑖𝑐𝑒 =
𝐹𝑙𝑎𝑡𝑡𝑖𝑐𝑒
𝐴𝑙𝑎𝑡𝑡𝑖𝑐𝑒

=
8𝑎2

√3𝐴𝑙𝑎𝑡𝑡𝑖𝑐𝑒
𝜎𝑖𝑛 (3.16) 

𝜀𝑙𝑎𝑡𝑡𝑖𝑐𝑒 = 𝜀 =
𝜎𝑙𝑎𝑡𝑡𝑖𝑐𝑒
𝐸

=
8𝑎2

√3𝐴𝑙𝑎𝑡𝑡𝑖𝑐𝑒

𝜎𝑖𝑛
𝐸

 (3.17) 

𝐸𝑙𝑎𝑡𝑡𝑖𝑐𝑒 =
𝜎𝑖𝑛

𝜀𝑙𝑎𝑡𝑡𝑖𝑐𝑒
=
√3𝐴𝑙𝑎𝑡𝑡𝑖𝑐𝑒𝐸

8𝑎2
 (3.18) 

𝐴𝑙𝑎𝑡𝑡𝑖𝑐𝑒 =
16𝑎2𝜋

√3

𝑡1[𝑟
2 + (𝑟 − 𝑐)2]

𝑟2(𝑟 − 𝑐)
 (3.19) 

 

 Additional constraints on the lattice geometry are driven by the elastic stability of the 

lattice members.  Figure 3.6 shows the buckling analysis model for the lattice as well as the cross 

section definition for the lattice members.  An annular cross section was chosen for the ability to 

change the susceptibility of the beam to buckling while maintaining the same cross sectional 

area, as will be shown shortly.  From the definition of column buckling, the critical force on the 

members can be represented as seen in Equation 3.20 for the geometry of the lattice members.  

The second moment of area for an annular cross section can be seen in Equation 3.21, which can 

be reposed in terms of area as shown.  Combining the definition of the area of an annulus and 

Equations 3.19, 3.20, and 3.21 allows definition of the outer radius of the lattice member, shown 

in Equation 3.22 in terms of the geometry and a ratio between the two radii.  This ratio of radii 

can also be found in terms of the geometry and the force in the lattice as a minimum value in 

order to prevent buckling of the lattice member, shown in Inequality 3.23.   
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Figure 3.6 

 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

𝑙2
=
𝜋2𝐸𝐼

𝑎2
 (3.20) 

𝐼 =
𝜋

4
(𝑟2
4 − 𝑟1

4) =
𝑟2
2 + 𝑟1

2

4
𝐴𝑙𝑎𝑡𝑡𝑖𝑐𝑒 (3.21) 

𝑟2 =
4𝑎

31 4⁄ 𝑟
√
𝑡1[𝑟

2 + (𝑟 − 𝑐)2]

(𝑟 − 𝑐)(1 − 𝜓2)
              𝑤ℎ𝑒𝑟𝑒    𝜓 ≡

𝑟1
𝑟2

 (3.22) 

𝜓 ≤ √
√3𝜎𝑖𝑛𝑟

4(𝑟 − 𝑐)2 − 8𝐸𝜋3𝑡1
2[𝑟2 + (𝑟 − 𝑐)2]2

√3𝜎𝑖𝑛𝑟
4(𝑟 − 𝑐)2 + 8𝐸𝜋3𝑡1

2[𝑟2 + (𝑟 − 𝑐)2]2
         𝑤ℎ𝑒𝑟𝑒   𝜎𝑖𝑛2 ≤ 𝜎𝑖𝑛 ≤ 𝜎𝑖𝑛1 (3.23) 

 

 Returning to the geometry of the lattice cell as defined in Figure 3.4, the solid volume 

occupied by the lattice can be represented as shown in Equation 3.24, as stated earlier.  

Additionally, the volume occupied by the lattice cell can be represented as shown in Equation 

3.25 in relation to the geometric variable a.  The ratio between these two volumes can be denoted 

as shown in Equation 3.26 with the lattice member cross sectional area being substituted from 

Equation 3.19.  This ratio gives the proportion of the volume occupied by the lattice as a whole 

which is actually occupied by material.   

 

𝑉𝑠𝑜𝑙𝑖𝑑 = 𝑎 ∙ 𝐴𝑙𝑎𝑡𝑡𝑖𝑐𝑒 ∙ 16 (3.24) 

𝑉𝑐𝑒𝑙𝑙 = (√2𝑏̂)
3
=
64

3√3
𝑎3 (3.25) 

𝛾𝑉 =
𝑉𝑠𝑜𝑙𝑖𝑑
𝑉𝑐𝑒𝑙𝑙

=
12𝜋[𝑟2 + (𝑟 − 𝑐)2]𝑡1

𝑟2(𝑟 − 𝑐)
 (3.26) 

 

 Using Equation 3.26, the total mass of the airship can be determined.  Here, neutral 

buoyancy will be assumed as well as a perfect evacuation of the airship and no payload.  This is 

the same threshold case used for the determining the feasibility of the earlier monocoque design.  

As such, the mass of the airship can be computed as shown in Equation 3.27.  For neutral 

𝐹𝑙𝑎𝑡𝑡𝑖𝑐𝑒 

  𝑟1 𝑟2 𝑎 
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buoyancy, the mass displaced is equal to the mass of the airship.  Using Equations 3.27 and 2.3, 

Equation 3.28 can be created representing neutral buoyancy, which can be further simplified to 

Equation 3.29. 

 

𝑚𝑠ℎ𝑖𝑝 =
4

3
𝜋{𝑟3 − (1 − 𝛾𝑉)[(𝑟 − 𝑡2)

3 − (𝑟 − 𝑐 + 𝑡1)
3] − (𝑟 − 𝑐)3}𝜌𝑠ℎ𝑒𝑙𝑙 (3.27) 

4

3
𝜋𝑟3𝜌𝑎𝑡𝑚 = 𝑚𝑠ℎ𝑖𝑝 =

4

3
𝜋{𝑟3 − (1 − 𝛾𝑉)[(𝑟 − 𝑡2)

3 − (𝑟 − 𝑐 + 𝑡1)
3] − (𝑟 − 𝑐)3}𝜌𝑠ℎ𝑒𝑙𝑙 (3.28) 

𝑟3𝜌𝑎𝑡𝑚 = {𝑟
3 − (1 − 𝛾𝑉)[(𝑟 − 𝑡2)

3 − (𝑟 − 𝑐 + 𝑡1)
3] − (𝑟 − 𝑐)3}𝜌𝑠ℎ𝑒𝑙𝑙 (3.29) 

 

 Here, observing the possible instabilities associated with the sandwich structure, the 

thicknesses of the two sandwich faces should be equal, defined in Equation 3.30.  Doing so 

reduces the risk of the elastic instability associated with wrinkling of the faces since each face 

has the same stiffness and therefore neither is more susceptible to instability.  Now, using the 

methods described by Bruhn1, the bending stiffness of the sandwich structure can be represented 

as shown in Equation 3.31 with the accompanying model of the sandwich structure shown in 

Figure 3.7.  The parameter lambda in this equation (3.31) is a property of the material as defined 

in Equation 3.32.  Additionally, the effective stiffness, E’, of the plates can be represented as in 

Equation 3.33: a function of the geometry and material properties.   

 

 
Figure 3.7 

 

𝑡1 = 𝑡2 = 𝑡𝑓 (3.30) 

𝐷 =
𝐸′𝑡𝑓ℎ

2

2𝜆
+
𝐸′𝑡𝑓

3

6𝜆
 (3.31) 

𝜆 = 1 − 𝜈2 (3.32) 

𝐸′ = 𝐸
2𝑡𝑓
𝑐
= 𝐸

2𝑡𝑓
2𝑡𝑓 + 𝑑

 (3.33) 

 

𝑡2 

𝑐 
𝑑 

𝑡1 

ℎ 

𝑙𝑎𝑡𝑡𝑖𝑐𝑒 

𝑓𝑎𝑐𝑒 2 

𝑓𝑎𝑐𝑒 1 
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 The effective stiffness of the lattice structure as a whole can be represented as shown in 

Equation 3.34, based on the bending stiffness and geometry.  This effective stiffness can now be 

injected into the same equation for critical buckling pressure of a sphere (2.8) used in the earlier 

analysis.  Combining these two equations results in Equation 3.35, representing the critical 

buckling pressure of a sandwich based monocoque sphere as a function of the effective bending 

stiffness, geometry, and material.  Equation 3.36 is formed by applying the previously used 

threshold conditions and combining Equations 3.31, 3.32, 3.33, and 3.35, which represents the 

final criteria for this airship design to withstand global buckling. 

 

𝐸𝑠 =
12(1 − 𝜈2)𝐷

𝑡2 ∙ 2𝑡𝑓
           𝑤ℎ𝑒𝑟𝑒   𝑡 = 𝑐 = 2𝑡𝑓 + 𝑑 (3.34) 

𝑃𝑐𝑟 =
4√3(1 − 𝜈2)𝐷

𝑟2 ∙ 𝑡𝑓
 (3.35) 

𝑃𝑐𝑟 =
4𝐸

√3(1 − 𝜈2)

𝑡𝑓(3𝑐
2 − 6𝑐 ∙ 𝑡𝑓 + 4𝑡𝑓

2)

𝑐 ∙ 𝑟2
= 𝑃𝑎𝑡𝑚 (3.36) 

 

 Due to the greater design space allowed for this design by the addition of the sandwich 

parameters, this design is not as constrained by the material properties available.  That is to say, 

the insufficiency of material properties can be circumvented by modulating the thickness of the 

core in relation to the other geometric variables.  In this way, both criteria denoted in Equations 

3.29 and 3.36 can be met with current materials.  However, under further scrutiny, the thickness 

required for the lattice members, in order to meet the criteria mentioned earlier, is thinner than 

current manufacturing processes are capable of.  Therefore this design, though possible, is 

currently confined to theory due to manufacturing limitations.  But the design still remains 

conditionally viable, should materials technology advance to a point encompassing these 

manufacturing needs.  If this were to be the case, this design would be highly beneficial due to 

the exceedingly high associated payload capacity.  These advancements would likely be 

associated with composite materials, due to their high strength and stiffness for a given mass.   

 

Sandwich Shell: Honeycomb 
 For the next design iteration, the goal was to find a viable solution to the material 

manufacturing limitations associated with the previous design.  The design described herein uses 

a sandwich structure to increase resistance of the monocoque shell to buckling, much like the 

lattice based sandwich shell described above.  Though the same method is employed in order to 

reduce susceptibility of the shell to elastic instability, here the core is comprised of a honeycomb 

structure.  Implementation of the honeycomb structure in this design is chosen to possibly avoid 

the material limitations encountered with the lattice structure as well as avoid the increased 

complexity of the lattice to manufacture and transport.  This implementation of the honeycomb 

was also chosen for the possibility of implementation of aerogel-like materials or materials with 

similar characteristics of extremely low density with reasonable strength and stiffness. 

 Much of the analysis necessary for the honeycomb sandwich structure is similar to that of 

the lattice based structure, and will be used correspondingly.  However, the honeycomb core of 
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this sandwich structure brings other stability considerations to account for.  Where the lattice 

stability was examined through local buckling of the individual lattice members, here, the 

honeycomb must be examined for wrinkling and intra-cell buckling as well as plate buckling of 

the individual cell walls.  Analysis for these modes of instability is based the work by Bruhn1, 

with the geometry of the honeycomb sandwich structure as shown in Figure 4.1. 

 

 
Figure 4.1 

 

 Wrinkling in the faces of the sandwich structure can be determined using Equation 4.1, 

which shows the critical wrinkling stress for the honeycomb sandwich structure.  Here, as 

assumed prior, the stress in all directions is equal since the structure is symmetric on the faces of 

the sandwich structure.  The effective core stiffness, Ec’, is defined as shown in Equation 4.2 as a 

function of the honeycomb cell geometry as laid out in Figure 4.2.  Additionally, the effective 

rigidity of the core, Gc’, is defined in Equation 4.3, depending on the honeycomb cell geometry.  

Combining Equations 4.1, 4.2, 4.3 and the previous equation for the stress in the sandwich faces 

(3.2) results in Equation 4.4: the critical wrinkling pressure for the honeycomb sandwich 

structure as used in a monocoque sphere.   

 

𝜎𝑐𝑤 =
0.43(𝐸 ∙ 𝐸𝑐

′ ∙ 𝐺𝑐
′)1 3⁄

(1 + (
𝜎𝑦
𝜎𝑥
)
3

)
1 3⁄

=
0.43(𝐸 ∙ 𝐸𝑐

′ ∙ 𝐺𝑐
′)1 3⁄

21 3⁄
 

(4.1) 

𝐸𝑐
′ = 𝐸𝑐 ∙ (

2 ∙ 𝑠 ∙ 𝑡𝑐 − 𝑡𝑐
2

𝑠2
)

1.415

∙ 2.13 (4.2) 

𝐺𝑐
′ = 𝐺𝑐 ∙

2 ∙ 𝑠 ∙ 𝑡𝑐 − 𝑡𝑐
2

𝑠2
1

3
 (4.3) 

𝑃𝑐𝑤 =
2𝑡𝑓(2𝑟 − 𝑐)

𝑟2
(
2 ∙ 𝑠 ∙ 𝑡𝑐 − 𝑡𝑐

2

𝑠2
)

0.805

(𝐸 ∙ 𝐸𝑐
′ ∙ 𝐺𝑐

′)1 3⁄ ∙ 0.305 (4.4) 

 

 Addressing the intra-cell buckling of the sandwich structure can be accomplished using 

Equation 4.5 for the intra-cell buckling stress.  Here, the same assumption of equivalent strain in 

all directions can be used.  Intra-cell buckling is a buckling mode of the face in the space within 

𝑡2 

𝑐 
𝑑 

𝑡1 

ℎ 

𝑐𝑜
𝑟𝑒

 

𝑓𝑎𝑐𝑒 2 

𝑓𝑎𝑐𝑒 1 

𝑠 𝑡𝑐 
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the honeycomb cells, unsupported by the honeycomb structure.  Combining Equation 4.5 with 

the equation for the stress in the sandwich faces (3.2) results in Equation 4.6 for the critical intra-

cell buckling pressure on the sphere.   

 

𝜎𝑐𝑖 =
0.75𝐸

(1 + (
𝜎𝑦
𝜎𝑥
)
3

)
1 3⁄
(
𝑡𝑓
𝑠
)
3 2⁄

=
0.75𝐸

21 3⁄
(
𝑡𝑓
𝑠
)
3 2⁄

 
(4.5) 

𝑃𝑐𝑖 =
2𝑡𝑓(2𝑟 − 𝑐)

𝑟2
∙
0.75𝐸

21 3⁄
(
𝑡𝑓
𝑠
)
3 2⁄

 (4.6) 

 

 Using the results from Equation 4.4, a representation for the thickness of the honeycomb 

walls can be developed as shown in Equation 4.7 based on the wrinkling criteria.  In much the 

same way, a formula for the honeycomb cell size can be created as shown in Equation 4.8 based 

on the intra-cell buckling criteria from Equation 4.6.  Now, based on the geometry from Figure 

4.2, a ratio for the proportion of the space occupied by the honeycomb which is actually filled by 

material can be defined as seen in Equation 4.9.  Subsequently, the values for wall thickness and 

cell size from Equations 4.7 and 4.8 can be substituted into Equation 4.9 and simplified, as 

shown.   

 

 
Figure 4.2 

 

𝑡𝑐 = 𝑠 {1 − √1 − [
5𝑟2𝑃𝑎𝑡𝑚

3(𝐸 ∙ 𝐸𝑐 ∙ 𝐺𝑐)
1 3⁄ (2𝑟 − 𝑐)𝑡𝑓

]

5 4⁄

} (4.7) 

𝑠 = [
9𝐸2

28 3⁄ 𝑃𝑎𝑡𝑚
2

(2𝑟 − 𝑐)2

𝑟4
𝑡𝑓
5]

1 3⁄

 (4.8) 

 

𝜎𝑦 𝜎𝑦 

𝜎𝑥 

𝜎𝑥 

𝑡𝑐 

𝑠 
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𝛾𝑉 =
2 ∙ 𝑠 ∙ 𝑡𝑐 − 𝑡𝑐

2

𝑠2
= [

5𝑃𝑎𝑡𝑚𝑟
2

3(𝐸 ∙ 𝐸𝑐 ∙ 𝐺𝑐)
1 3⁄ (2𝑟 − 𝑐)𝑡𝑓

]

5 4⁄

 (4.9) 

 

 Local buckling within the honeycomb is addressed by modeling each wall of the cells in 

the honeycomb structure as a simply supported plate.  This model is shown in Figure 4.3, and 

using this model, the plate buckling stress can be represented as shown in Equation 4.10.  

Converting between the dimensions in Figures 4.3 and 4.2, the geometry for plate buckling can 

be put in terms of the honeycomb geometry as defined in Equation 4.11.  The buckling 

coefficient in Equation 4.10 is defined for a simply supported plate as seen in Equation 4.12, 

which depends on the ratio between the height and width of the plate since this ratio determines 

the propensity of the plate to develop full waves, as can be observed in the equation.  To better 

observe the behavior of the buckling coefficient in terms of the plate dimensions, the value of the 

buckling coefficient has been plotted for various aspect ratios of the plate in Figure 4.4.  

Combining Equations 4.10, 4.11, and 4.12 results in a full expression for the plate buckling stress 

in the honeycomb cell walls, shown in Equation 4.13. 

 

   
Figure 4.3      Figure 4.4    

 

𝜎𝑐𝑝 =
𝜋2𝐾𝑐𝐸𝑐

12(1 − 𝜈2)
(
𝑡𝑐
𝑏
)
2

 (4.10) 

𝑎 = 𝑐 − 2𝑡𝑓     ;      𝑏 =
1

√3
𝑠 (4.11) 

𝐾𝑐 =
𝑏

𝑎
{1 − abs [cos (𝜋

𝑎

𝑏
)]} + 4 (4.12) 

𝜎𝑐𝑝 =
𝜋2𝐸𝑐

4(1 − 𝜈2)
(
𝑡𝑐
𝑠
)
2

∙ {4 +
𝑠

√3(𝑐 − 2𝑡𝑓)
(1 − abs [cos (𝜋

√3(𝑐 − 2𝑡𝑓)

𝑠
)])} (4.13) 

 

2 4 6 8 10

a

b

1

2

3

4

Kc

𝑎 

𝑏 

𝜎 

𝜎 
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 The stress experienced by the honeycomb core of the sandwich structure can be found 

from the product of the stress transmitted by the core (3.4) and the core volume ratio (4.9).  This 

stress in the honeycomb is shown in Equation 4.14, relying on Equations 3.4 and 4.9 from earlier 

development.  Rearranging Equation 4.14 and applying the critical plate buckling stress from 

Equation 4.13 results in Equation 4.15, expressing the critical plate buckling pressure for the 

honeycomb sandwich structure of the monocoque sphere.   

 

𝜎𝑐 = 𝜎𝑖𝑛 ∙ 𝛾𝑉 =
𝑟 − 𝑐

2𝑟 − 𝑐
𝑃𝑎𝑡𝑚𝛾𝑉 (4.14) 

𝑃𝑐𝑝 =
𝜎𝑐𝑝
𝛾𝑉

2𝑟 − 𝑐

𝑟 − 𝑐
 (4.15) 

 

 The global buckling for this sandwich structure can be represented in exactly the same 

way the previous sandwich structure’s global stability was modeled.  That is, global stability for 

the honeycomb sandwich structure can be determined using Equation 3.36.  As such, the entirety 

of the sandwich structure’s stability is accounted for. 

 Regrettably, once all of the constraints from the various modes of elastic instability have 

been applied to the design, there is no material which is able to meet the criteria while remaining 

within manufacturing constraints.  Even when using two different materials for the face and core 

of the sandwich structure, and thereby tailoring each to the specific needs of the respective 

component, has no viable solution.  As such, the evacuated airship design utilizing a monocoque 

sphere with honeycomb sandwich shell is not feasible given current materials.  Therefore, other 

options must be explored for structural implementation in the vacuum airship design.   

 However, this design, like the previous sandwich structure based shell, is still viable if 

materials advance to a point where the aforementioned constraints can be met.  For this design, 

enabling technology would be associated with advances in materials comparable to aerogels.  

That is to say, advances in materials with extraordinarily low densities while retaining reasonable 

strength and stiffness.  Therefore, between the sandwich structures described here, there are 

viable avenues for the evacuated airship for future advancements in either composites or low 

density materials.  For current materials to be a viable option, further design iterations were 

necessary.   
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Tensegrity Based Approach 
 In order to create a feasible design for the evacuated airship using currently available 

materials, further iterations of the design were necessary.  For the subsequent iterations of the 

design, an entirely different method was needed to deal with the forces on the structure and the 

resulting inherent elastic instabilities. 

 Moving away from the monocoque designs, the current rendition of the design makes use 

of a tensegrity structure which supports a membrane to maintain the vacuum.  Using this method 

of supporting atmospheric pressure mitigates the problem of shell buckling, however the beams 

used in the tensegrity macro-structure are still subject to buckling.  By employing several 

different mass saving methods to the design, the total structural mass can be reduced to a point 

where the system has neutral buoyancy as well as a net lift in order to incorporate useful payload.  

A twelve beam tensegrity design was chosen because higher numbers of beams begin to become 

susceptible to shell buckling modes and lower numbers of beams lose efficiency of mass 

displaced, support, and mass savings. 

 For the tensegrity design, the three dimensional shape of the airship is modeled using a 

regular truncated octahedron for simplicity, as shown in Figure 5.1 for a clear and opaque solid, 

even though a more structurally optimum shape is a slight variation on the truncated octahedron.  

Using this geometry, the length of the beams can be represented as shown in Equation 5.1.  

Subsequently, formulae for the volume and surface area of the airship can be found, shown in 

Equations 5.2 and 5.3 respectively, as a function of beam length.  

 

  
Figure 5.1 

 

𝑙𝑏𝑒𝑎𝑚 = √6𝑎 (5.1) 

𝑉 = 8√2𝑎3 =
4

3√3
𝑙𝑏𝑒𝑎𝑚
3  (5.2) 

𝐴𝑠𝑢𝑟𝑓 = (6 + 12√3)𝑎
2 = (1 + 2√3)𝑙𝑏𝑒𝑎𝑚

2  (5.3) 

 

 As such, the mass displaced by the tensegrity design can be derived as the product of 

atmospheric density and volume of the truncated octahedron, denoted in Equation 5.4.  

Additionally, the total load on the beams can be calculated from the product of atmospheric 

pressure and the surface area of the airship.  Each beam can be assumed to carry virtually the 
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same load as the other beams because of the symmetry of the shape.  Therefore the total load is 

distributed equally to each beam, resulting in Equation 5.5 for beam load.   

 

𝑚𝑑𝑖𝑠𝑝 = 𝜌𝑎𝑡𝑚
4

3√3
𝑙𝑏𝑒𝑎𝑚
3  (5.4) 

𝐹𝑏𝑒𝑎𝑚 =
1

12

𝐹𝑡𝑜𝑡𝑎𝑙
2

=
𝑃𝑎𝑡𝑚𝐴𝑠𝑢𝑟𝑓

24
=
𝑃𝑎𝑡𝑚
24

𝑙𝑏𝑒𝑎𝑚
2 (1 + 2√3) (5.5) 

 

 Using the column buckling formula, shown in Equation 5.6, an expression for the mass 

required for beams of the tensegrity structure can be developed.  Therefore, a minimal mass 

beam with circular cross section has a cross sectional area as shown in Equation 5.7, from 

rearranging the Euler buckling formula.  For minimal mass of the beams, the load on the beams 

should be equivalent to the buckling load of the beams.  Applying the previous statement, 

Equations 5.5 and 5.7 can be combined to obtain Equation 5.8 as a solution for the beam’s cross 

sectional area required for a given beam length.   

 

𝐹 =
𝜋2𝐸𝐼

𝑙2
=
𝜋2𝐸

𝑙2
∙
𝜋𝑟4

4
 (5.6) 

𝐴𝑏𝑒𝑎𝑚 = 𝜋𝑟
2 = √

𝐹

𝜋𝐸
∙ 2𝑙𝑏𝑒𝑎𝑚 (5.7) 

𝐴𝑏𝑒𝑎𝑚 = √
𝑃𝑎𝑡𝑚(1 + 2√3)

6𝜋𝐸
𝑙𝑏𝑒𝑎𝑚
2  (5.8) 

 

 Assuming the mass of the membrane is negligible for now as are losses in displaced mass 

due to deformation of the membrane and imperfect vacuum the airship mass is equivalent to the 

structural mass; later, the mass of the membrane and losses will be accounted for using other 

methods.  Using the above simplification, Equation 5.9 gives the structural mass of this airship 

design based on the scale and material properties.  Applying a neutral buoyancy threshold as 

done with the previous designs, Equations 5.4 and 5.9 are combined, resulting in Inequality 5.10 

which gives the minimum material criteria for the tensegrity design.   

 

𝑚𝑠𝑡𝑟𝑢𝑐𝑡 = 12𝜌𝑠𝑡𝑟𝑢𝑐𝑡𝑙𝑏𝑒𝑎𝑚𝐴𝑏𝑒𝑎𝑚 = 12𝜌𝑠𝑡𝑟𝑢𝑐𝑡𝑙𝑏𝑒𝑎𝑚
3 √

(1 + 2√3)𝑃𝑎𝑡𝑚
6𝜋𝐸

 (5.9) 

𝑃𝑎𝑡𝑚
𝜌𝑎𝑡𝑚
2 ≤

2𝜋

81(1 + 2√3)

𝐸

𝜌𝑠𝑡𝑟𝑢𝑐𝑡
2  (5.10) 
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 As before, these criteria are well beyond current materials; however, there are many 

methods which may be employed to greatly reduce the mass of the structure.  Therefore, by 

using such methods, as described below, the material limitations may be mitigated.  For 

reference, renderings of both the design and the tensegrity internal structure can be seen in 

Figures 5.2 and 5.3 respectively.   

 

  
Figure 5.2      Figure 5.3 

 

Minimal Mass Tensegrity Beams 
 One method by which beam mass can be reduced is replacing the beams with tensegrity 

beam structures, from Skelton and Montuori2.  Here follows an abbreviated overview of the 

method used, since the original method has been slightly modified for three-dimensional 

implementation.  Mass savings from this method are achieved by reinforcement of the beam at 

key displacement points in the beam, therefore reducing the susceptibility of the beam system to 

local buckling as well as global buckling.  Minimal mass is further achieved for the design by 

sizing the components to fail under the same total external load, ensuring no component is over-

engineered.   

 Each beam in the tensegrity structure can be sized using a similar process as that in 

Equations 5.6, 5.7, and 5.8.  The final product of this method is shown in Equation 6.1, 

representing the mass of a beam for a given compressive load, length, and material respectively.  

In much the same way, tensile members of the structure can be represented using Equation 6.2 

for a given tensile load, length, and material respectively.  Under the additional constraint of 

approximately constant total length, as in Skelton and Montuori2, the pre-stress loads in the 

structure can be found using Equation 6.3, dependent on the corresponding compressive load and 

angle to the tensile member.  From Equation 6.3, the load on the reinforcing beams as well as 

their lengths can be found from Equations 6.4a and 6.4b respectively. 

 

𝑚𝑏 = 𝐴 ∙ 𝑙 ∙ 𝜌𝑏 = √𝑓𝑙
2
2𝜌𝑏

√𝜋𝐸𝑏
 (6.1) 

𝑚𝑠,𝑖 = 𝐴𝑡,𝑖𝑠𝑖𝜌𝑠 = 𝑡𝑖𝑠𝑖
𝜌𝑠
𝜎𝑠

 (6.2) 
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𝑡𝑖 =
𝑓0

2 cos(𝛼𝑖)
 (6.3) 

𝑓𝑣,𝑖 = 𝑓0 tan(𝛼𝑖) (6.4a) 𝑙𝑣,𝑖 = 𝑙𝑖 tan(𝛼𝑖) (6.4b) 

 

 In order to extend the method developed by Skelton and Montuori2 to three-dimensions, 

there must be buckling support implemented in an orthogonal direction.  Here, the simplest 

example is used to demonstrate this extension, shown in Figure 6.1 as the two-dimensional 

model from Skelton and Montuori2 and in Figure 6.2 as extended to three-dimensions.  This 

three-dimensional model is simply the addition of an identical set of supports as in Figure 6.1 

rotated to be orthogonal to the plane of the two-dimensional model.  To account for fixing the 

structure in three-dimensions, four new cables are added connecting the supporting beams.  

Advantageously, this extension to three-dimensions does not affect the physics of the method; 

therefore the same process for design can be used for both cases since exclusively the mass 

calculations are affected by the addition of the new supports.   

 

 
Figure 2.1 

 

 

  
Figure 2.2 

 

 As an extension of the method used by Skelton and Montuori2 has been developed in 

order to obtain further weight savings: iteratively applying the same principles of reinforcement, 

increasing the complexity of the design.  Figure 6.3 shows this extension to higher levels of 

complexity in two-dimensions, with the same extension for three-dimensions described above 

still applicable.  This extension uses slightly different notation than the original, however these 

differences can be seen in Figure 6.3 as well as Figure 6.4, which shows the schematization of 

𝑓0 𝑓0 

𝑙0 

𝑙1 

𝛼1 

𝑙𝑣,1 

 𝑡1  𝑓𝑣,1 

𝑋 
𝑌 

𝑍 
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the model in Figure 6.3.  Unless otherwise noted, the rest of the notation is consistent with the 

original method. 

 

 
Figure 6.3 

 

 

 
Figure 6.4 

 

 Equation 6.1 is sufficient to address local stability of the structure for higher complexity 

designs; therefore the only issue to be resolved is that of global buckling.  To determine the 

global stability of the structure, the rotational equilibrium equations for each of the joints must be 
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found.  Here, the complexity of the structure will be denoted c, which is the number of iterations 

the method has been applied; to see the evolution of increasing the complexity on the tensegrity 

beam design in three dimensions, refer to Figure 10.1.  The reaction force at each join in the 

structure can be represented by Equation 6.5 with the relevant spring constant equivalents 

represented in Equation 6.6.  Rotational equilibrium can therefore be represented at each joint by 

Equation 6.7.  Additionally, for a given complexity c, there will be 2c joints and consequently 2c 

simultaneous equations. 

 

𝑅𝑖 = 𝐾𝑖𝑋𝑖 (6.5) 

𝐾𝑖 = 2𝑘𝑐−𝑏𝑖 ∙ sin
2(𝛼𝑐−𝑏𝑖)              𝑤𝑖𝑡ℎ  𝑏𝑖  𝑠. 𝑡.  

𝑖

2𝑏𝑖
∈ 𝑂𝑑𝑑 (6.6) 

𝑅0 ∙ 𝑖 ∙ 𝑙𝑐 − 𝑁 ∙ 𝑋𝑖 −∑(𝑖 − 𝑗)𝑅𝑗𝑙𝑐

𝑖

𝑗=1

= 0 (6.7) 

 

 Solving Equation 6.7 for the first joint in the beam gives the reaction force at one end of 

the structure as shown in Equation 6.8.  Then combining Equations 6.5, 6.7, and 6.8, the 

equilibrium of the system for each joint becomes as shown in Equation 6.9.  This leads to one 

less equation in the total system of equations, i.e. Equation 6.9 is applicable for integer values of 

i from one to 2c-1. 

 

𝑅0 = 𝑁
𝑋1
𝑙𝑐

 (6.8) 

𝑁 ∙ 𝑋1𝑖 − 𝑁 ∙ 𝑋𝑖 −∑(𝑖 − 𝑗)𝐾𝑗𝑋𝑗𝑙𝑐

𝑖

𝑗=1

= 0 (6.9) 

 

 In order to determine the critical global buckling load, Equation 6.9 must be satisfied for 

all joints in the structure in the non-trivial case, where not all displacements are zero.  Solutions 

for the system of equations based on Equation 6.9 can be given by the determinate of the 

coefficient matrix equal to zero.  Said coefficient matrix can be represented as shown in Equation 

6.10, which is separated into three components for simplicity, represented in Equations 6.11, 

6.12, and 6.13.  The critical load for the structure is the minimum value for N which leads to the 

determinate of M being zero.   

 

𝑀𝑖𝑗 = 𝐵𝑖𝑗 + 𝐶𝑖𝑗 + 𝐷𝑖𝑗                     𝑀 ∈ ℝ2
𝑐−1×2𝑐−1 (6.10) 

𝐵𝑖𝑗 = {
−𝑁,          𝑗 = 𝑖 + 1
  0,            𝑗 ≠ 𝑖 + 1

 (6.11) 

𝐶𝑖𝑗 = {
(𝑗 − 𝑖 − 1)𝑙𝑐𝐾𝑖 ,           𝑗 ≤ 𝑖
               0,                     𝑗 > 𝑖

 (6.12) 
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𝐷𝑖𝑗 = {
(𝑗 + 1)𝑁,          𝑖 = 1
       0,                 𝑖 ≠ 1

 (6.13) 

 

 For complexities greater than two, there is no absolute solution for critical load; 

therefore, to proceed with the design, one of the possible solutions is selected.  Then, at the end 

of the calculations, the selected solution is checked to determine if any of the other solutions are 

less than the value of the selected one.  This process is then repeated until the correct critical load 

is found.   

 After a critical load is selected, the equivalent spring constants can be applied based on a 

linear elastic behavior model for the cables, shown in Equation 6.14.  Based on the geometry of 

the design as defined in Figure 6.3, the cable lengths can be represented as seen in Equation 6.15.  

Combining Equations 6.14 and 6.15 leads to Equation 6.16—a representation dependent on the 

geometry of the design and material properties.  For these instances and those prior, the section 

lengths can be denoted as seen in Equation 6.17. 

 

𝑘𝑖 =
𝐸𝑠𝐴𝑠,𝑖
𝑠𝑖

 (6.14) 

𝑠𝑖 =
𝑙𝑖

cos(𝛼𝑖)
 (6.15) 

𝑘𝑖 =
𝐸𝑠𝐴𝑠,𝑖 cos(𝛼𝑖)

𝑙𝑖
 (6.16) 

𝑙𝑖 =
𝑙0
2𝑖

 (6.17) 

 

 From here, Equation 6.16 can be substituted into the previously found critical load and 

setting said critical load equal to the total compressive load on the structure.  The resulting 

formula can then be solved for the cable areas and the areas subsequently minimized to result in 

a minimal mass solution.  As such, there are two definitions for mass of the cables in the 

structure, the maximum of which must be selected in order to avoid failure of the structure prior 

to the prescribed load.  By combining Equations 6.2, 6.3, and 6.15 in addition to the spring 

constant based representation for cable area, the cable mass can be represented as denoted in 

Equation 6.18.   

 

𝑚𝑠,𝑖 = max {
𝑓0𝑙𝑖𝜌𝑠

2 cos2(𝛼𝑖) 𝜎𝑠
,
𝐴𝑠,𝑖𝑙𝑖𝜌𝑠
cos(𝛼𝑖)

} (6.18) 

 

 The final mass of the structure can be represented as in Equation 6.19, as the sum of the 

masses of the beams and the masses of the cables.  In total, the mass of the beams in the structure 

can be represented using Equation 6.20, which is the sum of the required mass for each beam in 

the structure as determined by the load supported by the beam and the beam’s length, as well as 

material properties.  Similarly, the total mass for the structure’s cables is represented by Equation 
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6.21, equivalent to the sum of the cables’ masses as determined by the tensile load requirement 

and the spring constant driven requirement, as well as their respective lengths, angles, and 

material properties.   

 

𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑏,𝑡𝑜𝑡𝑎𝑙 +𝑚𝑠,𝑡𝑜𝑡𝑎𝑙 (6.19) 

𝑚𝑏,𝑡𝑜𝑡𝑎𝑙 = 2
𝑐√𝑓0𝑙𝑐

2
2𝜌𝑏

√𝜋𝐸𝑏
+ 4∑2𝑖−1√𝑓𝑣,𝑖𝑙𝑣,𝑖

2
2𝜌𝑏

√𝜋𝐸𝑏

𝑐

𝑖=1

 

= √𝑓0𝑙0
2
2𝜌𝑏

√𝜋𝐸𝑏
[
1

2𝑐
+ 4∑

tan5 2⁄ (𝛼𝑖)

2𝑖+1

𝑐

𝑖=1

] 

(6.20) 

𝑚𝑠,𝑡𝑜𝑡𝑎𝑙 = 8 [∑2𝑖−1max {
𝑓0𝑙𝑖𝜌𝑠

2 cos2(𝛼𝑖) 𝜎𝑠
,
𝐴𝑠,𝑖𝑙𝑖𝜌𝑠
cos(𝛼𝑖)

}

𝑐

𝑖=1

] + 4 [∑2𝑖−1
𝐴𝑠,𝑖𝑙𝑖𝜌𝑠
cos(𝛼𝑖)

𝑐

𝑖=1

]

= 2𝑙0𝜌𝑠∑sec(𝛼𝑖) [𝐴𝑠,𝑖 + 2max {
𝑓0

2 cos(𝛼𝑖) 𝜎𝑠
, 𝐴𝑠,𝑖}]

𝑐

𝑖=1

 

(6.21) 

 

 A minimal mass structure for supporting the prescribed load with a given length can be 

obtained by minimizing Equation 6.19 with respect to the applicable angles αi.  There may be 

physical constraints to be considered for this minimization, such as intersection of the cables, but 

these may be dealt with by a rotation of the supporting beams depending on angle.  Alternatively, 

physical constraints may be dealt with by imposing an additional constraint on the angles to 

avoid intersection.   

 This design approach greatly benefits the evacuated airship design.  However, more 

reduction in mass is still necessary for the design to be plausible.  Moreover, the mass of the 

membrane for the airship is still neglected, which further necessitates greater reduction in 

structural mass. 

 

Thin Walled Cylindrical Beams 
 A thin walled cylindrical beam cross section is far more efficient in buckling than a solid 

circular cross section for a given area due to the increased second moment of area, and 

consequently increased stiffness.  Therefore, the mass of the beam can be far less than that of a 

solid beam for a given loading and length.  However, introducing a thin walled cylindrical cross 

section necessitates local buckling analysis to account for any possible buckling of the beam 

walls.  

 The second moment of area for an annular (ring) cross section can be seen in Equation 

7.1.  For simplification, the ratio between the inner and outer diameter of the ring is defined as 

shown in Equation 7.2.  Applying the definition from Equation 7.2 to Equation 7.1 results in 

Equation 7.3, providing better insight into the properties of the annular cross section over a solid 

circular cross section.  Similarly, the area of the annular cross section can be represented with 

Equation 7.4. 
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𝐼 =
𝜋

4
(𝑟2
4 − 𝑟1

4) (7.1) 

𝑟 = 𝑟2 =
𝑟1
𝜓

 (7.2) 

𝐼 =
𝜋

4
𝑟4(1 − 𝜓4) (7.3) 

𝐴 = 𝜋𝑟2(1 − 𝜓2) (7.4) 

 

 The benefits of an annular cross section can be seen by observing that a reduction in cross 

sectional area by half can be achieved while the second moment of area is only reduced by one 

quarter.  For the previous example, the ratio of the radii is the reciprocal of root two.  

Additionally, the relation between outer radii can be obtained by setting the area of an annular 

cross section equal to the area of a solid circular cross section, which yields Equation 7.5.  Using 

this relation, the improvement in second moment of area for equivalent area cross sections can be 

observed in Figure 7.1 and the accompanying Equation 7.6. 

 
Figure 7.1 

 

𝑟𝑠 = 𝑟𝑎√1 − 𝜓
2 (7.5) 

𝐼𝑎
𝐼𝑠
=
𝑟𝑎
4(1 − 𝜓4)

𝑟𝑠
4

=
1 + 𝜓2

1 − 𝜓2
 (7.6) 

 

 Implementation of annular cross section beams in the previously discussed tensegrity 

design is fairly trivial.  Substituting Equation 7.3 into the buckling equation (5.6) and solving for 

the cross sectional area of the beam as defined by Equation 7.4 results in Equation 7.7, which 

gives the minimal mass of the beam for a given length and load.  This mass formula can be 

substituted back into the same method discussed above in place of Equation 6.1.   
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𝑚 = 𝜌 ∙ 𝐴 ∙ 𝑙 =
2𝜌(1 − 𝜓2)

√𝐸𝜋(1 − 𝜓4)
𝑙2√𝑓 (7.7) 

 

 Application of this cross section provides even further mass saving capability for the 

vacuum airship.  However, as previously stated, this cross section warrants further analysis 

because of the additional buckling mode possibilities which accompany the hollow beam.  

Consideration for these new buckling modes is addressed below. 

 

Applicable Buckling Modes and Analysis 
 Buckling, or elastic instability, is the primary source of failure for this design because of 

the pressure and mass constraints discussed previously.  Due to the nature of the vacuum airship 

concept, the structural loads being supported are mostly compressive, which tends to lead to an 

elastic instability mode of failure.  The types of elastic instability encountered with this design 

are global buckling, local beam buckling, and local buckling of the wall.  Both the global 

buckling of the tensegrity beams and the local beam buckling have been addressed in the above 

sections.  As such, the local buckling of the hollow beam walls is the only instability mode to be 

examined. 

 Analysis for the stability of the beam walls was conducted using the approach from 

Bruhn1.  The approach detailed therein is based on a small-deflection theoretical solution to an 

eighth-order differential equation from Donnell3, which is shown here in Equation 8.1 for 

reference.   

 

𝐸𝑡3

12(1 − 𝜈2)
∇8𝑤

𝐸𝑡

𝑟2
𝜕4𝑤

𝜕𝑥4
+ 2𝑠 ∙ 𝑡  ∇4 (

𝜕2𝑤

𝜕𝑥𝜕𝑠
) = 0 (8.1) 

 

 There are two possible representations of buckling for the beams in the vacuum airship, 

depending on the geometry of the beam.  The distinction between beam classifications is shown 

in Inequality 8.2.  Beams with geometries which satisfy Inequality 8.2 have their buckling load 

defined by Equation 8.3 and are considered, by Bruhn1, as long cylinders.  If a beam does not 

satisfy Inequality 8.2, the beam is likewise considered a transition cylinder and the buckling load 

of the beam can be represented by Equation 8.4. 

 

{
 

 
𝑙2

𝑟 ∙ 𝑡
> 100     ⇒                 𝐿𝑜𝑛𝑔 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟

𝑙2

𝑟 ∙ 𝑡
≤ 100     ⇒     𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟

 (8.2) 

𝑓 =  
𝐸 ∙ 𝑡

𝑟√3(1 − 𝜈2)
 (8.3) 

𝑓 =
𝐸𝜋2𝑡2

12 𝑙2(1 − 𝜈2)
[1 +

12 𝑙4(1 − 𝜈2)

𝜋4𝑟2𝑡2
] (8.4) 
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 As long as the force on each of the beams in the design does not exceed the buckling load 

as defined by Equation 8.3 or 8.4, then the structure is not in danger of failure by local buckling 

of the walls.  If the design load does exceed the determined buckling load, however, the 

thickness of the walls must be increased, or other constraints imposed on the design to ensure no 

local buckling occurs in the beam walls.  Implementation of the entire theoretical design, as a 

compilation of all the aforementioned analysis, is implemented using Mathematica.  Said code 

used to generate the tensegrity beams is included in Appendix 1. 
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Theoretical Results 
 The following results were obtained using the theoretical methods described above.  

These results use general material properties of carbon fiber composites currently available.  

Carbon fiber composite was chosen for the material’s low density and high rigidity in order to 

keep mass to a minimum while supplying as much support against buckling as possible.   

 Considering both the tensegrity design as a whole as well as the implementation of 

tensegrity based beams, Figure 9.1 shows the mass reduction factor associated with each level of 

tensegrity complexity at various beam lengths.  From this graph, one can see the minimum mass 

reduction from implementation of a tensegrity beam is independent of the length of the beam 

span.  Therefore, the beam length will not limit the possible mass reduction from implementation 

of the tensegrity beam method.  Additionally, from Figure 9.1, the trend for mass savings in 

relation to the complexity of the tensegrity beam starts to become apparent.  The aforementioned 

trend can be empirically estimated as slightly greater than half of the previous complexity’s 

mass.  This trend is further reinforced when taking into consideration a beam of complexity zero 

would have a mass reduction value of one, since said beam would be the standard beam to which 

the other tensegrity structures are compared. 

 

 
Figure 9.1 

 

 Results from implementing the second mass reduction method, using a hollow tube in 

place of a solid cylindrical beam, can be seen for a tensegrity beam of complexity three in Figure 

9.2.  As was the case with the previous graph, this graph shows see the mass reduction from use 

of hollow beams in the tensegrity design is independent of the length of the beam span.  Similar 

to the complexity, the beam length will not limit the possible mass reduction from using a thin-

walled cylindrical cross section.  Instead, the mass savings will be constrained by the local wall 

buckling as well as manufacturing constraints on the minimum thickness of the tube walls.   
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Figure 9.2 

 

 Since the mass reduction due to both the wall thickness and the complexity of the 

tensegrity structure have been shown to be independent of the beam span, the mass reduction can 

be viewed without consideration to the beam span.  The analysis for mass reduction in relation to 

proportional wall thickness for three levels of complexity is shown in Figure 9.3 for an eighty 

meter beam span.  Empirically, the weight reduction accomplished by the change in cross section 

is approximately the same, proportionally for each complexity.  As such, the mass reduction is 

compounded by the implementation of both methods.  Additionally, this graph shows the 

associated benefits of reducing the wall thickness increase as the ratio of radii approaches unity.  

However, physical constraints from minimum thickness of the material begin to play a part as the 

ratio approaches unity.   

 

 
Figure 9.3 

 

 Assigning the ratio of radii to be 0.99, the resulting mass reductions can be seen for 

complexities one through three in Figure 9.4.  The ratio of radii was chosen to be 0.99 because 

this is approximately the closest to unity the ratio can be set, for a structure of complexity three, 

while still being unaffected by local wall buckling at all levels, as well as being within 

manufacturing constraints of the material thickness for all members.  Similar results can be seen 

in this graph as in Figure 9.1.  However, the mass ratio represented in this graph is close to a 
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tenth of that shown in Figure 9.1, which emphasizes the benefits of implementing both mass 

reducing methods.   

 

 
Figure 9.4 

 

 In order to observe the theoretical effect of scale on the lift provided by the airship, the 

skinless payload of the airship is defined as the lift the vacuum airship would provide if the 

vacuum could be held without a membrane, or with an infinitely thin membrane.  The results of 

this measure can be seen in Figure 9.5.  Here, the benefits of the airship’s scale become apparent; 

excess lift provided by the airship increases as the scale of the airship increases for the higher 

complexity designs.  These results can also be interpreted as the mass available to devote to the 

membrane for a neutral buoyancy or feasibility threshold case.   

 

 
Figure 9.5 

 

 For the more interesting case where the evacuated airship has payload capacity, the 

available mass for the membrane is of note.  The graph shown in Figure 9.6 shows the maximum 

thickness available for the membrane while providing enough surplus lift to transport five 

hundred kilograms of payload.  Notably, the thickness for a complexity three beam structure of 

eighty meter span is within the physical manufacturing constraints of the carbon fiber composite, 

which marks the point where all physical constraints on the evacuated airship design have been 

satisfied theoretically.  More detail will be given to the design of the membrane in later sections 

from a computational standpoint. 
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Figure 9.6 

 

 From the theoretical analysis of the evacuated airship design as a tensegrity structure as 

described, the concept is feasible given current materials and implementing the design methods 

detailed herein.  This design, when using a bar length of 80 meters, which corresponds to a rough 

diameter of 100 meters, results in a total displaced mass of 7882 kilograms.  The internal 

structure in this case has a mass of 3771.5 kilograms.  Using FEA software, as described below, 

a membrane with a mass of 1600 kilograms was attached to the design and simulated under 

atmospheric loading on Mars.  This simulation resulted in a loss in volume of the displaced 

atmosphere roughly equating to 1493 kilograms.  This leaves approximately 500 kilograms for 

payload of the evacuated airship on site.  If the trends seen in Figures 9.1 and 9.4 continue, then 

by extension of the tensegrity beam design to complexity 4, the internal structure mass should be 

reduced by a little less than half.  Therefore, accounting for error and further mass distribution in 

the membrane, this results in an expected payload between 1 and 1.5 tons.   

 Unlike the previously described designs utilizing a monocoque shell, this tensegrity 

approach meets elastic stability constraints on all levels of the design as well as meeting 

manufacturing constraints based on the material.  As such, this analysis has shown this design to 

be feasible in theory.  Moving forward, the theory will be verified using detailed, non-linear 

finite element simulations, accounting for non-linearities in displacement, global and local 

buckling, and membrane failure criteria. 

 

Additional Discussion 
 The mathematical theory of the tensegrity based design for the evacuated airship, though 

interesting, does not fully encapsulate the concept behind the design.  In order to better describe 

the tensegrity structure based beam’s design, three-dimensional renderings for beams of 

complexity one through three are shown in Figure 10.1.  These renderings are produced from the 

theoretical calculations described prior, with dimensions which correspond to the minimal mass 

solutions to the theoretical model.  In future research, higher complexity beam designs may be 

explored within the manufacturing constraints of the materials, and plausibly provide even 

greater mass reduction, leading to better payload capacity.   
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Figure 10.1 

 

 The entirety of the structure for this design of the evacuated airship, as a combination of a 

twelve beam tensegrity design utilizing tensegrity based beams, is fairly complex.  Said design 

can be seen as a three-dimensional rendering in Figure 10.2.  Due to the complexity of the 

design, and the resulting crowded nature of the full rendering, one may find using Figure 10.3 to 

be helpful.  Figure 10.3 represents the twelve beam tensegrity design; the final design is then 

obtained by replacing each of these twelve beams with the tensegrity structure of complexity 

three seen in Figure 10.1.  This may be a better way to understand the concept instead of 

interpreting Figure 10.2 directly.   

 

   
Figure 10.2      Figure 10.3  

Complexity 3 Complexity 2 Complexity 1 
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 Even though the biggest impedance to the vacuum airship is the structural viability of the 

design, there are other factors to consider for a successful mission.  The highest priority mission 

factors for the evacuated airship will be discussed further below.  Additionally, the analysis and 

considerations for those factors as conducted in this research are entailed below.   
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Mission Considerations 
 There are several factors to consider when looking at the evacuated airship in a mission 

context; the foremost of these is the journey of the evacuated airship to Mars.  This task has two 

major aspects: first, transport of the evacuated airship, and second, the planetary insertion of the 

vehicle.  Transport of the vehicle is highly non-trivial because the design is on the order of a 

hundred meters in diameter, which is vastly too large to be contained within a launch vehicle 

fairing.  The vehicle is also too large to be assembled in Earth orbit, then sent to Mars because 

this would have an exceedingly high probability of damage to the vehicle en route.  Planetary 

insertion, or entry into the atmosphere, of the vehicle is necessary because the goal of the 

mission is to have the evacuated airship perform tasks in the Martian atmosphere and at the 

surface of Mars. 

 

Deployment 
 As stated above, the design of the evacuated airship is exceedingly large in order to fully 

take advantage of the mission capabilities of the vehicle.  Consequently, the airship will need to 

be transported in a smaller form, which drives a collapsible and deployable design.  Fortunately, 

the tensegrity design lends itself well to this task. 

 Beside the mass reduction provided by the tensegrity structure, additional benefit from 

the tensegrity structure design of the beams is their aptitude for implementation in a deployable 

manner.  Since the joints of the tensegrity structure do not require any geometric constraints for 

the structural stability of the system to be maintained, the entire structure can be folded in on 

itself by disconnecting a few of the cables in the design.  The deployment of a complexity three 

tensegrity design is shown in Figure 11.1, with the structure being deployed to the full eighty 

meter design from a ten meter transportation configuration.   

 
Figure 11.1 

 

Planetary Insertion 
 The atmospheric entry of the evacuated airship was analyzed using a series of differential 

equations governing the dynamics and thermodynamics of the system.  These differential 

equations are base off the analysis methods detailed by the FAA in reference 4 and Atmospheric 

Entry by Griffin5.  As such, the dynamics of the airship during entry are governed by the effects 

of gravitational, drag, and buoyant forces, shown in Equation 11.1.  The thermodynamics of the 

airship are governed by the energy exchange between the detached shock, through the boundary 

layer, and the vehicle as well as the blackbody radiative effects.  This energy exchange can be 

modeled as shown in Equation 11.2. 
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(11.1) 

𝑄̇ =
𝜌 ∙ 𝑉3 ∙ 𝐴

5⏟      
𝑠ℎ𝑜𝑐𝑘 𝑒𝑛𝑒𝑟𝑔𝑦
𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒

− 𝜎 ∙ 𝜀 ∙ 𝑇4⏟    
𝑏𝑙𝑎𝑐𝑘𝑏𝑜𝑑𝑦
𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛

 
(11.2) 

 

 From the atmospheric model for Mars in reference 4, Equation 11.3 represents the 

atmospheric density as a function of distance from the planet’s surface.  Subsequently, defining 

the entry in a Mars-centered, Cartesian reference frame leads to the definitions for terms shown 

in Equations 11.4, 11.5, and 11.6.  These equations can be used in conjunction with those above 

to create a viable system of differential equations governing both the motion and the 

thermodynamics of the airship during entry. 

 

𝜌 = 𝜌𝑠𝑒
−β∙h (11.3) 

𝑟 = |𝑟| = √𝑥2 + 𝑦2 (11.4) 

ℎ = |𝑟| − 𝑅 = √𝑥2 + 𝑦2 − 𝑅 (11.5) 

𝑉 = √𝑥̇2 + 𝑦̇2 (11.6) 

 

 Using the above equations, the atmospheric entry was modeled with the system of 

differential equations shown in Equations 11.7, 11.8, and 11.9.  Since this system has two second 

order differential equations and one first order differential equation, five initial conditions are 

needed to solve the system.  These initial conditions can be seen in Equations 11.10 as a function 

of initial distance from the surface of Mars, the true anomaly, velocity, and orbital flight path 

angle.  For the purposes of this analysis, the true anomaly can be se to zero because of the radial 

symmetry of the problem, therefore the true anomaly will not have any bearing over the results.  

Additionally, the orbital flight path angle can be set to zero because the entirety of the design 

space can be covered with the other two parameters.  The initial temperature of the airship was 

chosen to be fifty Kelvin as an estimation of the temperature of the airship components after the 

trip to Mars; if need be, additional cooling measures can be taken to further buffer the airship 

against heat prior to arrival. 

 

𝑥̈ = [𝜌𝑠𝑒
−𝛽(√𝑥2+𝑦2−𝑅)

∙ 𝑉𝑜𝑙 − 1] ∙
𝐺𝑀 ∙ 𝑥

(𝑥2 + 𝑦2)
3
2⁄
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𝑚
 (11.7) 

𝑦̈ = [𝜌𝑠𝑒
−𝛽(√𝑥2+𝑦2−𝑅)

∙ 𝑉𝑜𝑙 − 1] ∙
𝐺𝑀 ∙ 𝑦

(𝑥2 + 𝑦2)
3
2⁄
− 𝜌𝑠𝑒

−𝛽(√𝑥2+𝑦2−𝑅)√𝑥̇2 + 𝑦̇2 ∙
𝑦 ∙̇ 𝐶𝑑 ∙ 𝐴

𝑚
 (11.8) 
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𝑇̇ = [
𝜌𝑠𝑒

−𝛽(√𝑥2+𝑦2−𝑅)
∙ (𝑥2 + 𝑦2)

3
2⁄ ∙ 𝐴

5
− 𝜎 ∙ 𝜀 ∙ 𝑇4]

1

𝐶𝑝𝑚
 (11.9) 

𝑥(0) = (ℎ0 + 𝑅) cos(𝜃)  ;   𝑦(0) = (ℎ0 + 𝑅) sin(𝜃)  ;   

𝑥̇(0) = 𝑉0 cos(𝛾)  ;   𝑦̇(0) = 𝑉0 cos(𝛾)  ;   𝑇(0) = 𝑇0 

(11.10) 

 This analysis assumes the various components of the airship have been deployed from the 

launch vehicle fairing and are ready for the assembly process to begin.  The assembly process 

does not take place during travel to Mars because doing so would increase the likelihood of 

damage from debris in transit.  Therefore, the assembly process occurs during the time period 

between deployment and entry into the atmosphere.  This can be seen illustrated in Figure 11.1.   

 

 Results from the analysis can be seen in Figure 11.2 for various initial heights with initial 

velocities corresponding to circular orbit velocity at that height.  This figure shows the 

trajectories associated with the different heights with respect to Mars.  These simulations have 

been run until the lift of the evacuated airship fully takes over, which in the mission is the point 

where operations can begin.  Furthermore, other important properties of the entry can be seen in 

Figure 11.3, which gives the trajectory in addition to the velocity, temperature, and acceleration 

profiles with time.   

 
Figure 11.2 
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Figure 11.3 

 

 In addition to the data shown in Figure 11.3, the maximum values for the important 

aspects of the entry can be observed as they relate to the initial altitude.  Said aspects being the 

time available for assembly of the airship from the deployed state and the maximum temperature 

experienced by the airship.  These values are plotted in Figure 11.4 for a larger sampling of 

initial altitudes than shown in Figure 11.3, so as to result in more accurate interpolation.  The 

variance observed in the maximum temperature depends on the point in the vehicle’s orbit at 

which the atmosphere is first significantly encountered, which explains the sinusoidal nature of 

the variance.  These figures show that the assembly time and the maximum temperature both 

decrease as the orbit is initiated with lower altitudes, however, the temperature decreases only 

slightly, whereas the assembly time has an exponential behavior.   

 
Figure 11.4 

 

 The analysis was also conducted for various perturbations of the initial velocity: the other 

design parameter available.  Results for these simulations can be seen in Figure 11.5, which 
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shows the trajectory along with temperature, velocity, and acceleration profiles for each case.  

Again, the additional data associated with a larger sampling is seen in Figure 11.6.  These figures 

show that the maximum temperature decreases much more significantly with a decrease in 

velocity from circular than that seen with change in the initial altitude.  However, the same 

exponential trend in assembly time is observable for these cases as in the altitude cases.   

 

 
Figure 11.5 

 

 

      
Figure 11.6 

 

 Of note are the temperatures experienced by the vehicle for both sets of cases above, for 

both of these simulations, the temperature is five hundred or more Kelvin lower than that of the 

orbiter shuttle upon Earth re-entry.  However, having an even lower temperature would still be 

desirable.  Since having a low temperature of the airship is desirable and having a relatively long 

time for assembly is also desirable, combinations of decreased velocity with increased height 
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were tested to observe the results of combining the two.  As such, results from setting the 

difference in velocity to 200 meters per second off circular are shown in Figure 11.7, which has 

some fairly interesting properties observed in the acceleration profile.  The peak acceleration for 

this simulation has a maximum for 600,000 meters initial altitude, both lower and higher than 

that, the acceleration has less of a peak value.  However, this is far more acceleration in general 

than the cases seen with nominal initial circular orbital velocity.  Therefore, the maximum 

acceleration, maximum temperature, and assembly time are all of interest for the analysis, which 

for this case are plotted in Figure 11.8.   

 

 
Figure 11.7 

 

 
Figure 11.8 
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 These results encourage further study of the relation between the design variables, initial 

altitude and initial velocity, and the assembly time, maximum temperature and acceleration.  

Consequently, simulations were done for various values of the altitude and velocity to obtain a 

full view of the design space as laid out by the three resulting values given above.  The results of 

this analysis are shown in Figure 11.9, which gives a contour plot for each of the values of 

interest. 

 
Figure 11.9 

 

 Simulations were also done for cases with 500 meters per second off circular velocity.  

Results for these simulations are shown in Figure 11.10, these cases can be seen to keep a 

relatively preferable balance between the resulting values of interest.  However the final 

designed entry plan will be dependent on constraints imposed by the final design. 

 

 
Figure 11.10 
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 In summary, this analysis shows that using a decaying orbit for the evacuated airship’s 

entry into the atmosphere provides significant benefits and may be a viable option for the 

mission architecture of the evacuated airship on Mars.  Final values for the planetary insertion 

plan will need to be determined further down the line to conform to constraints based on the final 

material and structure of the airship.  Therefore, this analysis should be viewed as preliminary 

and will be used and modified as the evacuated airship’s design progresses.  As such, the final 

trajectories will be based of meeting the three criteria of assembly time needed, maximum 

temperature, and maximum acceleration.   
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FEA Modeling and Verification 
 In order to verify the structural theory underlying the tensegrity based design of the 

evacuated airship, Finite Element Analysis software was used to simulate the structure and loads.  

The software chosen for this simulation was ABAQUS, which is a high fidelity numerical solver 

for the finite element system.  Creation of the evacuated airship design for analysis by the 

program involved the production of a separate program written to be compatible with the 

Mathematica code responsible for optimizing the design.  This code converts the design from 

pure mathematical values to a collection of nodes and the connectivity between nodes to form 

the final design, along with the properties of each member.  Said program then converts the 

collection of nodes and the connectivity of the structure into an input file suitable for ABAQUS 

to interpret based on the programming conventions of the FEA software, e.g. using the 

ABAQUS keywords to define each of the members of the total structure.   

 Conversion of the theoretical design metrics to a truss-like form relies on two steps.  The 

first step is to create a mathematic spatial description of the macro tensegrity structure, which 

can and was accomplished using the truncated octahedron simplification of the tensegrity design 

model.  Next, a nodal description of the tensegrity based beam is created using the metrics from 

the theoretical design, e.g. the dimensions and geometric relations between each of the beam and 

cable members.  These two components are then combined by translating the node placement of 

the tensegrity beams to replace the standard beams within the macro tensegrity structure using a 

series of translations and rotations.  This process yields a full three dimensional description of 

the airship’s internal structure which can then be converted into an FEA acceptable format. 

 In addition, the program developed to convert the theoretical design into a viable FEA 

model defines the connections between each of the members of the structure as pin joints (as 

dictated by the tensegrity beam theory).  This is accomplished by constraining the positions of all 

coincident nodes in the design with a series of equations fixing their position relative to each 

other.  Also dictated by the tensegrity beam theory is the inclusion of pre-stresses in the cable 

members, which is also taken care of by the conversion program.  Pre-stressing the cables 

utilizes the initial conditions options within ABAQUS, and in doing so prescribes the required 

stress to each cable according to need.  As such, the cable members never experience anything 

other than tension, and so need not be modeled for any buckling effects.   

 As stated before, the properties of each member are included in the creation of the input 

file.  This includes the material properties, which are written into the input file in an acceptable 

format for the FEA solver, as well as the geometric properties of the member, such as the radius 

or cross sectional area of the member.  All of these considerations are taken care of by the 

conversion program, which allows for rapid change of the structural design of the airship in 

contrast to the gargantuan task of creating the design from within an FEA solver.  The code for 

this conversion process can be seen in Appendix 2. 

 Once the structural model is loaded into ABAQUS, the simulation can be created and 

evaluated.  Obviously, the model is first constrained to be structurally determinate, that is unable 

to move in space without deformation while still being able to fully deform; this is to ensure 

numerical feasibility of the simulation.  The membrane of the airship is then attached, with a 

prescribed thickness within the lifting capabilities of the design.  This takes care of the entire 

evacuated airship structure, which is at this point ready for loading and simulation.  Loads on the 

evacuated airship are prescribed by the atmospheric pressure on Mars, and modeled as 

distributed loads over the surface of the membrane, normal to said surface.   



49 
 

 The simulation of the evacuated airship made use of geometric non-linearities, which 

allow the pressure distribution to conform to the deformation of the membrane.  This is much 

more accurate to the real world instance because atmospheric pressure follows the curvature of a 

body, as opposed to a linear application of the pressure.  Additionally, the simulation was 

conducted for non-linear strain states of the material to obtain a more accurate result.  Due to the 

high complexity of the structural model, loading, and simulation scope, a dynamic analysis was 

performed.  A dynamic analysis allows the structure to deform dynamically, which can be useful 

for many different cases, but here the dynamic analysis is used to find the steady state of the 

structure under deformation.  The final stress state for the tensegrity beam is shown in Figure 

12.1 as determined by the FEA simulation. 

 

 
Figure 12.1 

 

 As such, the simulation resulted in the following deformation and stress fields shown in 

Figures 12.2 and 12.3 respectively for a membrane thickness of 80 microns of Miralon, a carbon 

fiber-like material developed through NASA research.  The deformation seen in Figure 12.1 

equates to 1493 kilograms in lost lift, which still leaves mass for payload when all is said and 

done.  Furthermore, the effects of this deformation may be further reduced and the membrane 

made more resilient by non-uniform distribution of the thickness.  This modulation of the 

thickness will allow the stress concentrations to be alleviated, increasing the reliability of the 

design as a whole.  The aforementioned method can also reduce the deformation because the loss 

in lift is linked to key locations of deformation, which propagate through the membrane, leading 

to the loss in volume and consequent loss of lift.   
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Figure 12.2      Figure 12.3 

 

 This FEA simulation validates the tensegrity beam theory used for design of the vacuum 

airship for Mars.  As such, further application of the tensegrity beam theory may be useful and 

therefore warrants further investigation for both this and other applications requiring high 

strength, low mass structures.  Additionally, this simulation shows that the current design for the 

evacuated airship is viable with consideration to all structural components, and as such 

demonstrates the feasibility of the concept and design.   
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Conclusion 
 This research has investigated the primary feasibility of the evacuated airship concept as 

a viable vehicle for Mars missions and exploration.  At the conclusion of this investigation, there 

has been sufficient evidence to prove the feasibility of the evacuated airship as a tensegrity 

design using currently available materials.  In addition, other designs have been analyzed and 

though found to be impossible with current materials, should materials technology continue to 

advance, these designs may prove feasible at a later date.  Implementation of a monocoque shell 

utilizing a lattice based sandwich structure will be brought closer to feasibility with 

improvements to composite materials and their manufacturing capabilities.  Likewise, 

implementation of the monocoque shell using a honeycomb sandwich structure will be made 

more feasible through advancements in ultra-low density materials, such as aerogels and the like.   

 The tensegrity based design using current materials, accounting for losses due to 

deflection of the membrane and other factors, is capable of 500 kilograms of payload.  If trends 

in the mass reduction capabilities of the tensegrity beam design continue to higher complexities, 

which is probable, then implementation of a complexity 4 beam will result in 1 to 1.5 tons of 

payload capacity.  In addition, the tensegrity design has been shown to offer full deployability 

and can be collapsed for transport to Mars.  Consequently, this offers a feasible mission 

implementation path for the installment of the evacuated airship on Mars.  Moreover, planetary 

insertion simulations have shown the design space of the atmospheric entry plan to be readily 

controllable to comply with the final needs of the evacuated airship design.   

 The structural aspects of the design have been fully verified using finite element analysis 

software.  This computation involved detailed, non-linear finite element simulations, accounting 

for non-linearities in displacement, global and local buckling, and membrane failure criteria.  

These high fidelity tests utilize dynamic simulation to fully encapsulate the deformations and 

loadings on the structure in entirety.  Additional validation for the mission aspects of the design 

comes from the numerical analysis associated with the atmospheric entry.   

 This effort should not be considered final in any respect.  The investigation conducted 

here has been purposed to explore the most fundamental feasibility aspects of the evacuated 

airship concept as an installation on Mars.  There are many other aspects to be explored to both 

further improve the capabilities of the evacuated airship as well as reinforce the mission within 

which the evacuated airship will be incorporated.  As a result of this investigation, the 

foundational aspects of the evacuated airship have been established as they pertain to current 

technologies and the design has been shown to be feasible for implementation on Mars.  Of 

course there will be more obstacles moving forward, but one should keep in mind there have 

been many obstacles in the path of arriving at this design point.  Therefore, the most recent 

design iteration has plenty of avenues available for mitigation of difficulties, and is a strong 

foundation for future development.   
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