367 research outputs found

    Functional consequences of subunit diversity in RNA polymerases II and V

    Get PDF
    SummaryMultisubunit RNA polymerases IV and V (Pol IV and Pol V) evolved as specialized forms of Pol II that mediate RNA-directed DNA methylation (RdDM) and transcriptional silencing of transposons, viruses, and endogenous repeats in plants. Among the subunits common to Arabidopsis thaliana Pols II, IV, and V are 93% identical alternative ninth subunits, NRP(B/D/E)9a and NRP(B/D/E)9b. The 9a and 9b subunit variants are incompletely redundant with respect to Pol II; whereas double mutants are embryo lethal, single mutants are viable, yet phenotypically distinct. Likewise, 9a or 9b can associate with Pols IV or V but RNA-directed DNA methylation is impaired only in 9b mutants. Based on genetic and molecular tests, we attribute the defect in RdDM to impaired Pol V function. Collectively, our results reveal a role for the ninth subunit in RNA silencing and demonstrate that subunit diversity generates functionally distinct subtypes of RNA polymerases II and V

    Canyons and slides on the continental slope seaward of a shallow bank, Labrador margin, eastern Canada

    Get PDF
    The ~ 200 km-wide Labrador continental shelf consists of a series of shallow banks and intervening cross-shelf troughs (Fig. 1b). Glacial reconstructions suggest that the banks were occupied by slow-flowing ice and the troughs by ice-streams during several Quaternary glaciations (Dyke et al. 2002; Josenhans et al. 1986; Margold et al. 2015). On the continental slope offshore of the Makkovik Bank - southern Hopedale Saddle region, several submarine canyons and interfluves with numerous sediment destabilisation features are visible in multibeam data (Fig. 1a).This is the author accepted manuscript. The final version is available from Geological Society of London via https://doi.org/10.1144/M46.13

    Channels and gullies on the continental slope seaward of a cross-shelf trough, Labrador margin, eastern Canada

    Get PDF
    The Labrador Shelf is characterized by several cross-shelf troughs separated by intervening shallower banks. The troughs were probably occupied by fast-flowing ice streams in the Late Pleistocene. Hopedale Saddle trough has a long Quaternary history of till progradation at the shelf edge, and the modern continental slope developed over a major 0.3 Ma shelf-edge failure complex. The upper slope exhibits a series of relatively narrow and deep gullies, whereas the mid-slope contains wider and shallower channels that are locally anastomosing (Fig. 1a). The erosional submarine landforms on the slope are likely to be linked to the delivery of dense sediment-rich meltwater to the shelf edge from a full-glacial ice stream (Piper et al. 2012)

    The variety and distribution of submarine glacial landforms and implications for ice-sheet reconstruction

    Get PDF
    This is the final version of the article. It first appeared from The Geological Society via https://doi.org/10.1144/M46.18

    A transit timing analysis of seven RISE light curves of the exoplanet system HAT-P-3

    Get PDF
    We present seven light curves of the exoplanet system HAT-P-3, taken as part of a transit timing programme using the rapid imager to search for exoplanets instrument on the Liverpool Telescope. The light curves are analysed using a Markov chain Monte Carlo algorithm to update the parameters of the system. The inclination is found to be i= 86.75+0.22−0.21 °, the planet-star radius ratio to be Rp/R★= 0.1098+0.0010−0.0012 and the stellar radius to be R★= 0.834+0.018−0.026 R⊙, consistent with previous results but with a significant improvement in the precision. Central transit times and uncertainties for each light curve are also determined, and a residual permutation algorithm is used as an independent check on the errors. The transit times are found to be consistent with a linear ephemeris, and a new ephemeris is calculated as Tc(0) = 245 4856.701 18 ± 0.000 18 HJD and P= 2.899 738 ± 0.000 007 d. Model timing residuals are fitted to the measured timing residuals to place upper mass limits for a hypothetical perturbing planet as a function of the period ratio. These show that we have probed for planets with masses as low as 0.33 and 1.81 M⊕ in the interior and exterior 2:1 resonances, respectively, assuming the planets are initially in circular orbits

    Neural Correlate of Filtering of Irrelevant Information from Visual Working Memory

    Get PDF
    In a dynamic environment stimulus task relevancy could be altered through time and it is not always possible to dissociate relevant and irrelevant objects from the very first moment they come to our sight. In such conditions, subjects need to retain maximum possible information in their WM until it is clear which items should be eliminated from WM to free attention and memory resources. Here, we examined the neural basis of irrelevant information filtering from WM by recording human ERP during a visual change detection task in which the stimulus irrelevancy was revealed in a later stage of the task forcing the subjects to keep all of the information in WM until test object set was presented. Assessing subjects' behaviour we found that subjects' RT was highly correlated with the number of irrelevant objects and not the relevant one, pointing to the notion that filtering, and not selection, process was used to handle the distracting effect of irrelevant objects. In addition we found that frontal N150 and parietal N200 peak latencies increased systematically as the amount of irrelevancy load increased. Interestingly, the peak latency of parietal N200, and not frontal N150, better correlated with subjects' RT. The difference between frontal N150 and parietal N200 peak latencies varied with the amount of irrelevancy load suggesting that functional connectivity between modules underlying fronto-parietal potentials vary concomitant with the irrelevancy load. These findings suggest the existence of two neural modules, responsible for irrelevant objects elimination, whose activity latency and functional connectivity depend on the number of irrelevant object

    Functional Brain Network Modularity Captures Inter- and Intra-Individual Variation in Working Memory Capacity

    Get PDF
    Cognitive abilities, such as working memory, differ among people; however, individuals also vary in their own day-to-day cognitive performance. One potential source of cognitive variability may be fluctuations in the functional organization of neural systems. The degree to which the organization of these functional networks is optimized may relate to the effective cognitive functioning of the individual. Here we specifically examine how changes in the organization of large-scale networks measured via resting state functional connectivity MRI and graph theory track changes in working memory capacity.Twenty-two participants performed a test of working memory capacity and then underwent resting-state fMRI. Seventeen subjects repeated the protocol three weeks later. We applied graph theoretic techniques to measure network organization on 34 brain regions of interest (ROI). Network modularity, which measures the level of integration and segregation across sub-networks, and small-worldness, which measures global network connection efficiency, both predicted individual differences in memory capacity; however, only modularity predicted intra-individual variation across the two sessions. Partial correlations controlling for the component of working memory that was stable across sessions revealed that modularity was almost entirely associated with the variability of working memory at each session. Analyses of specific sub-networks and individual circuits were unable to consistently account for working memory capacity variability.The results suggest that the intrinsic functional organization of an a priori defined cognitive control network measured at rest provides substantial information about actual cognitive performance. The association of network modularity to the variability in an individual's working memory capacity suggests that the organization of this network into high connectivity within modules and sparse connections between modules may reflect effective signaling across brain regions, perhaps through the modulation of signal or the suppression of the propagation of noise

    The speed of parietal theta frequency drives visuospatial working memory capacity

    Get PDF
    The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta–gamma phase coupling theory of WM capacity

    The dynamics and neural correlates of audio-visual integration capacity as determined by temporal unpredictability, proactive interference, and SOA

    Get PDF
    Over 5 experiments, we challenge the idea that the capacity of audio-visual integration need be fixed at 1 item. We observe that the conditions under which audio-visual integration is most likely to exceed 1 occur when stimulus change operates at a slow rather than fast rate of presentation and when the task is of intermediate difficulty such as when low levels of proactive interference (3 rather than 8 interfering visual presentations) are combined with the temporal unpredictability of the critical frame (Experiment 2), or, high levels of proactive interference are combined with the temporal predictability of the critical frame (Experiment 4). Neural data suggest that capacity might also be determined by the quality of perceptual information entering working memory. Experiment 5 supported the proposition that audio-visual integration was at play during the previous experiments. The data are consistent with the dynamic nature usually associated with cross-modal binding, and while audio-visual integration capacity likely cannot exceed uni-modal capacity estimates, performance may be better than being able to associate only one visual stimulus with one auditory stimulus
    • …
    corecore