160 research outputs found

    Image analysis of olfactory responses in the procerebrum of the terrestrial slug Limax marginatus.

    Get PDF
    Neural oscillations have been found to occur in the olfactory centers of some vertebrates and invertebrates, including the procerebrum of the terrestrial slug Limax marginatus. Using optical recording with the potential-sensitive dye di-4-ANEPPS, we analyzed the spatiotemporal pattern of procerebral neural activities in response to odorants applied to an in vitro brain-superior tentacle preparation. The odor of rat chow, on which the slugs were normally fed, increased the frequency of the oscillation. Garlic odor, which induced aversive behavior in the slug, caused a transient increase in oscillation frequency during stimulation, followed by a second increase in oscillation frequency when the stimulus was terminated. Wave propagation from the distal to the proximal region of the procerebrum was accelerated in parallel with modulation of the frequency. The cycle-by-cycle average of the optical signals showed that a large area of the cerebral ganglia, including the procerebrum, was depolarized during the initial increase in frequency. During the second increase, however, the net depolarization was most prominent in the terminal mass of the procerebrum. These results suggest that the level of depolarization generated by interactions among the neurites projecting to the terminal mass, such as the neurites of the nonbursting neurons, may control neural oscillations in the procerebrum

    Optical recording analysis of olfactory response of the procerebral lobe in the slug brain.

    Get PDF
    We studied the oscillatory properties and the olfactory responses of the procerebral (PC) lobe of the cerebral ganglion in the terrestrial mollusc Limax marginatus. The PC lobe, a central olfactory organ in Limax, is a highly interconnected network of local interneurons that receives olfactory inputs from the inferior and superior tentacular noses. We used an optical recording technique with a voltage-sensitive dye to record the activity of the PC lobe from either the posterior or the dorsal surface. The recordings revealed that almost all PC interneurons showed spontaneous oscillatory activities that had been entrained with each other. Upon presentation to the nose of odors to which the slugs had been aversively conditioned, the basal level of the oscillation changed biphasically. In the early phase of the response, depolarization in the basal level of the oscillation occurred in one or more belt-shaped regions parallel to the dorsoventral axis. In the late phase of the response, hyperpolarization of basal potential level of the PC lobe oscillations occurred in a wider area. Such spatial and temporal modulation was not observed when the unpaired control odors were presented to the preparation, whereas the same preparations responded to the aversively conditioned stimuli. Thus, it was considered that the spatial and temporal response in the basal level of oscillation was specific to the aversively conditioned odors. Furthermore, the spatial pattern of the depolarization modulation in the early phase was repeatable in multiple trials performed using the same odor, although different odors produced different spatial patterns of the modulation. From these results, we conclude that in the PC lobe learned odors are represented as spatial and temporal activity patterns of oscillators that constitute a coherent network

    Study of Field-Induced Magnetic Order in Singlet-Ground-State Magnet CsFeCl3_3

    Full text link
    The field-induced magnetic order in the singlet-ground-state system CsFeCl3_3 has been studied by measuring magnetization and neutron diffraction. The field dependence of intensity for the neutron magnetic reflection has clearly demonstrated that the field-induced ordered phase is described by the order parameter . A condensate growth of magnons is investigated through the temperature dependence of MzM_z and MM_{\perp}, and this ordering is discussed in the context of a magnon Bose-Einstein condensation. Development of the coherent state and the static correlation length has been observed in the incommensurate phase in the field region of 5Hc5 H_{\rm c}, a satellite peak was found in coexistence with the commensurate peak at the phase boundary around 10 T, which indicates that the tilt of the c-axis would be less than 0.5\sim 0.5^{\circ} in the whole experiments.Comment: 5 pages, 5 figure

    Cloning of cDNA and genomic DNA for human cytochrome P-45011β

    Get PDF
    AbstractA full-length cDNA clone encoding steroid 11β-hydroxylase (P-45011β) has been isolated from a cDNA library derived from human adrenal tumor. The insert of the clone contains an open reading frame encoding a protein of 503 amino acid residues together with a 4 bp 5'-untranslated region and a 576 bp 3'-untranslated region to which a poly(A) tract is attached. The promoter region of the P-45011β gene has also been isolated from a genomic library derived from human pre-B cells. It contains a TATA box, a putative cAMP-responsive element, several repeated sequences and two sequence elements similar to the consensus sequence for binding of AP-1. A transient expression assay in Y-1 adrenal tumor cells demonstrates that the promoter activity is remarkably enhanced by treatment of the cells with cAMP. In addition, analysis using deletion mutants containing various lengths of the 5'-flanking region of the gene suggests that several cis-acting elements participate in transcriptional regulation of human P-45011β gene

    Functional analysis of HOXD9 in human gliomas and glioma cancer stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>HOX </it>genes encode a family of homeodomain-containing transcription factors involved in the determination of cell fate and identity during embryonic development. They also behave as oncogenes in some malignancies.</p> <p>Results</p> <p>In this study, we found high expression of the <it>HOXD9 </it>gene transcript in glioma cell lines and human glioma tissues by quantitative real-time PCR. Using immunohistochemistry, we observed HOXD9 protein expression in human brain tumor tissues, including astrocytomas and glioblastomas. To investigate the role of <it>HOXD9 </it>in gliomas, we silenced its expression in the glioma cell line U87 using <it>HOXD9</it>-specific siRNA, and observed decreased cell proliferation, cell cycle arrest, and induction of apoptosis. It was suggested that <it>HOXD9 </it>contributes to both cell proliferation and/or cell survival. The <it>HOXD9 </it>gene was highly expressed in a side population (SP) of SK-MG-1 cells that was previously identified as an enriched-cell fraction of glioma cancer stem-like cells. <it>HOXD9 </it>siRNA treatment of SK-MG-1 SP cells resulted in reduced cell proliferation. Finally, we cultured human glioma cancer stem cells (GCSCs) from patient specimens found with high expression of <it>HOXD9 </it>in GCSCs compared with normal astrocyte cells and neural stem/progenitor cells (NSPCs).</p> <p>Conclusions</p> <p>Our results suggest that <it>HOXD9 </it>may be a novel marker of GCSCs and cell proliferation and/or survival factor in gliomas and glioma cancer stem-like cells, and a potential therapeutic target.</p

    Development of Skin Flaps for Reconstructive Surgery : Random Pattern Flap to Perforator Flap

    Get PDF
    Flap transplantation has been an important procedure in plastic and reconstructive surgery to cover and fill various defects. Flap necrosis due to blood circulation failure leads to severe complications, especially in a patient undergoing reconstruction concerning the body cavity after tumor ablation. Surgical procedures for flap transplantation have been further improved and developed. We have reviewed from the random pattern flap to the newest procedure, the perforator flap. Perforator vessels were investigated in the process of development of the fasciocutaneous flap and have become important for blood supply of the skin flap. Blood circulation of the flap has become more stable and reliable than ever with the development and findings of the perforator vessels. Further development of a skin flap will be based on the perforasome concept, which involves the study of the territory and linking of perforator vessels

    Inhibition of NK cell activity by IL-17 allows vaccinia virus to induce severe skin lesions in a mouse model of eczema vaccinatum

    Get PDF
    Threats of bioterrorism have renewed efforts to better understand poxvirus pathogenesis and to develop a safer vaccine against smallpox. Individuals with atopic dermatitis are excluded from smallpox vaccination because of their propensity to develop eczema vaccinatum, a disseminated vaccinia virus (VACV) infection. To study the underlying mechanism of the vulnerability of atopic dermatitis patients to VACV infection, we developed a mouse model of eczema vaccinatum. Virus infection of eczematous skin induced severe primary erosive skin lesions, but not in the skin of healthy mice. Eczematous mice exhibited lower natural killer (NK) cell activity but similar cytotoxic T lymphocyte activity and humoral immune responses. The role of NK cells in controlling VACV-induced skin lesions was demonstrated by experiments depleting or transferring NK cells. The proinflammatory cytokine interleukin (IL)-17 reduced NK cell activity in mice with preexisting dermatitis. Given low NK cell activities and increased IL-17 expression in atopic dermatitis patients, these results can explain the increased susceptibility of atopic dermatitis patients to eczema vaccinatum
    corecore