12 research outputs found

    Genomics of Brucellosis in Wildlife and Livestock of the Greater Yellowstone Ecosystem

    Get PDF
    Brucellosis, a disease caused by the bacterium Brucella abortus, has recently been expanding its distribution in the Greater Yellowstone Ecosystem (GYE), with increased outbreaks in cattle and rising seroprevalence in elk (Cervus elaphus) over the past decade. Genetic studies suggest elk are a primary source of recent transmission to cattle. However, these studies are based on Variable Number Tandem Repeat (VNTR) data, which are limited in assessing and quantifying transmission among species. The goal of this study was to (i) investigate the introduction history of B. abortus in the GYE, (ii) identify B. abortus lineages associated with host species and/or geographic localities, and (iii) quantify transmission across wildlife and livestock host species and populations. We sequenced B. abortus whole genomes (n= 207) derived from isolates collected from three host species (bison, elk, cattle) over the past 30 years, throughout the GYE. We identified genetic variation among isolates, and applied a spatial diffusion phylogeographic modeling approach that incorporated temporal information from sampling. Based on these data, our results suggest four divergent Brucella lineages, with a time to most recent common ancestor of ~130 years ago, possibly representing a minimum of four brucellosis introductions into the GYE. Two Brucella lineages were generally clustered by geography. Evidence for cross-species transmission was detected among all species, though most events occur within species and herds. Understanding transmission dynamics is imperative for implementing effective control measures and may assist in identifying source populations responsible for past and future brucellosis infections in wildlife and outbreaks in livestock

    Who infects whom?-Reconstructing infection chains of Mycobacterium avium ssp. paratuberculosis in an endemically infected dairy herd by use of genomic data.

    No full text
    Recent evidence of circulation of multiple strains within herds and mixed infections of cows marks the beginning of a rethink of our knowledge on Mycobacterium avium ssp. paratuberculosis (MAP) epidemiology. Strain typing opens new ways to investigate MAP transmission. This work presents a method for reconstructing infection chains in a setting of endemic Johne's disease on a well-managed dairy farm. By linking genomic data with demographic field data, strain-specific differences in spreading patterns could be quantified for a densely sampled dairy herd. Mixed infections of dairy cows with MAP are common, and some strains spread more successfully. Infected cows remain susceptible for co-infections with other MAP genotypes. The model suggested that cows acquired infection from 1-4 other cows and spread infection to 0-17 individuals. Reconstructed infection chains supported the hypothesis that high shedding animals that started to shed at an early age and showed a progressive infection pattern represented a greater risk for spreading MAP. Transmission of more than one genotype between animals was recorded. In this farm with a good MAP control management program, adult-to-adult contact was proposed as the most important transmission route to explain the reconstructed networks. For each isolate, at least one more likely ancestor could be inferred. Our study results help to capture underlying transmission processes and to understand the challenges of tracing MAP spread within a herd. Only the combination of precise longitudinal field data and bacterial strain type information made it possible to trace infection in such detail

    An accurate and interpretable model for antimicrobial resistance in pathogenic Escherichia coli from livestock and companion animal species

    No full text
    Understanding the microbial genomic contributors to antimicrobial resistance (AMR) is essential for early detection of emerging AMR infections, a pressing global health threat in human and veterinary medicine. Here we used whole genome sequencing and antibiotic susceptibility test data from 980 disease causing Escherichia coli isolated from companion and farm animals to model AMR genotypes and phenotypes for 24 antibiotics. We determined the strength of genotype-to-phenotype relationships for 197 AMR genes with elastic net logistic regression. Model predictors were designed to evaluate different potential modes of AMR genotype translation into resistance phenotypes. Our results show a model that considers the presence of individual AMR genes and total number of AMR genes present from a set of genes known to confer resistance was able to accurately predict isolate resistance on average (mean F1 score = 98.0%, SD = 2.3%, mean accuracy = 98.2%, SD = 2.7%). However, fitted models sometimes varied for antibiotics in the same class and for the same antibiotic across animal hosts, suggesting heterogeneity in the genetic determinants of AMR resistance. We conclude that an interpretable AMR prediction model can be used to accurately predict resistance phenotypes across multiple host species and reveal testable hypotheses about how the mechanism of resistance may vary across antibiotics within the same class and across animal hosts for the same antibiotic

    Updated Reference Genome Sequence and Annotation of Mycobacterium bovis AF2122/97

    No full text
    We report here an update to the reference genome sequence of the bovine tuberculosis bacillus Mycobacterium bovis AF2122/97, generated using an integrative multiomics approach. The update includes 42 new coding sequences (CDSs), 14 modified annotations, 26 single-nucleotide polymorphism (SNP) corrections, and disclosure that the RD900 locus, previously described as absent from the genome, is in fact present.ISSN:2169-828

    Evolutionary Genomic and Bacterial Genome-Wide Association Study of Mycobacterium avium subsp. paratuberculosis and Dairy Cattle Johne's Disease Phenotypes

    No full text
    Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease in ruminants, which has important health consequences for dairy cattle. The Regional Dairy Quality Management Alliance (RDQMA) project is a multistate research program involving MAP isolates taken from three intensively studied commercial dairy farms in the northeastern United States, which emphasized longitudinal data collection of both MAP isolates and animal health in three regional dairy herds for a period of about 7 years. This paper reports the results of a pan-GWAS analysis involving 318 MAP isolates and dairy cow Johne's disease phenotypes, taken from these three farms. Based on our highly curated accessory gene count, the pan-GWAS analysis identified several MAP genes associated with bovine Johne's disease phenotypes scored from these three farms, with some of the genes having functions suggestive of possible cause/effect relationships with these phenotypes. This paper reports a pangenomic comparative analysis between MAP and Mycobacterium tuberculosis, assessing functional Gene Ontology category enrichments between these taxa. Finally, we also provide a population genomic perspective on the effectiveness of herd isolation, involving closed dairy farms, in preventing MAP interfarm cross infection on a microgeographic scale. IMPORTANCE Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease in ruminants, which has important health consequences for dairy cattle and enormous economic consequences for the dairy industry. Understanding which genes in this bacterium are correlated with key disease phenotypes can lead to functional experiments targeting these genes and ultimately lead to improved control strategies. This study represents a rare example of a prolonged longitudinal study of dairy cattle where the disease was measured and the bacteria were isolated from the same cows. The genome sequences of over 300 MAP isolates were analyzed for genes that were correlated with a wide range of Johne's disease phenotypes. A number of genes were identified that were significantly associated with several aspects of the disease and suggestive of further experimental follow-up.</p

    A Brucella spp. Isolate from a Pac-Man Frog (Ceratophrys ornata) Reveals Characteristics Departing from Classical Brucellae

    No full text
    Brucella are highly infectious bacterial pathogens responsible for brucellosis, a frequent worldwide zoonosis. The Brucella genus has recently expanded from 6 to 11 species, all of which were associated with mammals; The natural host range recently expanded to amphibians after some reports of atypical strains from frogs. Here we describe the first in depth phenotypic and genetic characterization of a Brucella strains isolated from a frog. Strain B13-0095 was isolated from a Pac-Man frog (Ceratophyrus ornate) at a veterinary hospital in Texas and was initially misidentified as Ochrobactrum anthropi. We found that B13-0095 belongs to a group of early-diverging brucellae that includes Brucella inopinata strain BO1 and the B. inopinata-like strain BO2, with traits that depart significantly from those of the ‘classical’ Brucella spp. Analysis of B13-0095 genome sequence revealed several specific features that suggest that this isolate represents an intermediate between a soil associated ancestor and the host adapted ‘classical’ species. Like strain BO2, B13-0095 does not possess the genes required to produce the perosamine based LPS found in classical Brucella, but has a set of genes that could encode a rhamnose based O-antigen. Despite this, B13-0095 has a very fast intracellular replication rate in both epithelial cells and macrophages. Finally, another major finding in this study is the bacterial motility observed for strains B13-0095, BO1 and BO2, which is remarkable for this bacterial genus.This study thus highlights several novel characteristics in strains belonging to an emerging group within the Brucella genus. Accurate identification tools for such atypical Brucella isolates and careful evaluation of their zoonotic potential, are urgently required

    Whole genome sequencing of Mycobacterium bovis to obtain molecular fingerprints in human and cattle isolates from Baja California, Mexico

    No full text
    Objectives: To determine genetic diversity by comparing the whole genome sequences of cattle and human Mycobacterium bovis isolates from Baja California. Methods: A whole genome sequencing strategy was used to obtain the molecular fingerprints of 172 isolates of M. bovis obtained from Baja California, Mexico; 155 isolates were from cattle and 17 isolates were from humans. Spoligotypes were characterized in silico and single nucleotide polymorphism (SNP) differences between the isolates were evaluated. Results: A total of 12 M. bovis spoligotype patterns were identified in cattle and humans. Two predominant spoligotypes patterns were seen in both cattle and humans: SB0145 and SB1040. The SB0145 spoligotype represented 59% of cattle isolates (n = 91) and 65% of human isolates (n = 11), while the SB1040 spoligotype represented 30% of cattle isolates (n = 47) and 30% of human isolates (n = 5). When evaluating SNP differences, the human isolates were intimately intertwined with the cattle isolates. Conclusions: All isolates from humans had spoligotype patterns that matched those observed in the cattle isolates, and all human isolates shared common ancestors with cattle in Baja California based on SNP analysis. This suggests that most human tuberculosis caused by M. bovis in Baja California is derived from M. bovis circulating in Baja California cattle. These results reinforce the importance of bovine tuberculosis surveillance and control in this region

    A systematic review of the impact of stigma and nihilism on lung cancer outcomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study systematically reviewed the evidence on the influence of stigma and nihilism on lung cancer patterns of care; patients’ psychosocial and quality of life (QOL) outcomes; and how this may link to public health programs.</p> <p>Methods</p> <p>Medline, EMBASE, ProQuest, CINAHL, PsycINFO databases were searched. Inclusion criteria were: included lung cancer patients and/or partners or caregivers and/or health professionals (either at least 80% of participants had lung cancer or were partners or caregivers of lung cancer patients, or there was a lung cancer specific sub-group focus or analysis), assessed stigma or nihilism with respect to lung cancer and published in English between 1<sup>st</sup> January 1999 and 31<sup>st</sup> January 2011. Trial quality and levels of evidence were assessed.</p> <p>Results</p> <p>Eighteen articles describing 15 studies met inclusion criteria. The seven qualitative studies were high quality with regard to data collection, analysis and reporting; however most lacked a clear theoretical framework; did not address interviewer bias; or provide a rationale for sample size. The eight quantitative studies were generally of low quality with highly selected samples, non-comparable groups and low participation rates and employed divergent theoretical and measurement approaches. Stigma about lung cancer was reported by patients and health professionals and was related to poorer QOL and higher psychological distress in patients. Clear empirical explorations of nihilism were not evident. There is qualitative evidence that from the patients’ perspectives public health programs contribute to stigma about lung cancer and this was supported by published commentary.</p> <p>Conclusions</p> <p>Health-related stigma presents as a part of the lung cancer experience however there are clear limitations in the research to date. Future longitudinal and multi-level research is needed and this should be more clearly linked to relevant theory.</p
    corecore