13,980 research outputs found

    Transition probabilities and measurement statistics of postselected ensembles

    Full text link
    It is well-known that a quantum measurement can enhance the transition probability between two quantum states. Such a measurement operates after preparation of the initial state and before postselecting for the final state. Here we analyze this kind of scenario in detail and determine which probability distributions on a finite number of outcomes can occur for an intermediate measurement with postselection, for given values of the following two quantities: (i) the transition probability without measurement, (ii) the transition probability with measurement. This is done for both the cases of projective measurements and of generalized measurements. Among other constraints, this quantifies a trade-off between high randomness in a projective measurement and high measurement-modified transition probability. An intermediate projective measurement can enhance a transition probability such that the failure probability decreases by a factor of up to 2, but not by more.Comment: 23 pages, 5 figures, minor updat

    The Dynamics of 1D Quantum Spin Systems Can Be Approximated Efficiently

    Full text link
    In this Letter we show that an arbitrarily good approximation to the propagator e^{itH} for a 1D lattice of n quantum spins with hamiltonian H may be obtained with polynomial computational resources in n and the error \epsilon, and exponential resources in |t|. Our proof makes use of the finitely correlated state/matrix product state formalism exploited by numerical renormalisation group algorithms like the density matrix renormalisation group. There are two immediate consequences of this result. The first is that the Vidal's time-dependent density matrix renormalisation group will require only polynomial resources to simulate 1D quantum spin systems for logarithmic |t|. The second consequence is that continuous-time 1D quantum circuits with logarithmic |t| can be simulated efficiently on a classical computer, despite the fact that, after discretisation, such circuits are of polynomial depth.Comment: 4 pages, 2 figures. Simplified argumen

    The Apps for Justice Project: Employing Design Thinking to Narrow the Access to Justice Gap

    Get PDF

    Information geometric approach to the renormalisation group

    Get PDF
    We propose a general formulation of the renormalisation group as a family of quantum channels which connect the microscopic physical world to the observable world at some scale. By endowing the set of quantum states with an operationally motivated information geometry, we induce the space of Hamiltonians with a corresponding metric geometry. The resulting structure allows one to quantify information loss along RG flows in terms of the distinguishability of thermal states. In particular, we introduce a family of functions, expressible in terms of two-point correlation functions, which are non increasing along the flow. Among those, we study the speed of the flow, and its generalization to infinite lattices.Comment: Accepted in Phys. Rev.

    The dynamics and excitation of torsional waves in geodynamo simulations

    Get PDF
    The predominant force balance in rapidly rotating planetary cores is between Coriolis, pressure, buoyancy and Lorentz forces. This magnetostrophic balance leads to a Taylor state where the spatially averaged azimuthal Lorentz force is compelled to vanish on cylinders aligned with the rotation axis. Any deviation from this state leads to a torsional oscillation, signatures of which have been observed in the Earth's secular variation and are thought to influence length of day variations via angular momentum conservation. In order to investigate the dynamics of torsional oscillations (TOs), we perform several 3-D dynamo simulations in a spherical shell. We find TOs, identified by their propagation at the correct Alfvén speed, in many of our simulations. We find that the frequency, location and direction of propagation of the waves are influenced by the choice of parameters. Torsional waves are observed within the tangent cylinder and also have the ability to pass through it. Several of our simulations display waves with core traveltimes of 4–6 yr. We calculate the driving terms for these waves and find that both the Reynolds force and ageostrophic convection acting through the Lorentz force are important in driving TOs

    Bounds on Information Propagation in Disordered Quantum Spin Chains

    Full text link
    We investigate the propagation of information through the disordered XY model. We find, with a probability that increases with the size of the system, that all correlations, both classical and quantum, are suppressed outside of an effective lightcone whose radius grows at most polylogarithmically with |t|.Comment: 4 pages, pdflatex, 1 pdf figure. Corrected the bound for the localised propagator and quantified the probability it bound occur

    On Predicting the Solar Cycle using Mean-Field Models

    Full text link
    We discuss the difficulties of predicting the solar cycle using mean-field models. Here we argue that these difficulties arise owing to the significant modulation of the solar activity cycle, and that this modulation arises owing to either stochastic or deterministic processes. We analyse the implications for predictability in both of these situations by considering two separate solar dynamo models. The first model represents a stochastically-perturbed flux transport dynamo. Here even very weak stochastic perturbations can give rise to significant modulation in the activity cycle. This modulation leads to a loss of predictability. In the second model, we neglect stochastic effects and assume that generation of magnetic field in the Sun can be described by a fully deterministic nonlinear mean-field model -- this is a best case scenario for prediction. We designate the output from this deterministic model (with parameters chosen to produce chaotically modulated cycles) as a target timeseries that subsequent deterministic mean-field models are required to predict. Long-term prediction is impossible even if a model that is correct in all details is utilised in the prediction. Furthermore, we show that even short-term prediction is impossible if there is a small discrepancy in the input parameters from the fiducial model. This is the case even if the predicting model has been tuned to reproduce the output of previous cycles. Given the inherent uncertainties in determining the transport coefficients and nonlinear responses for mean-field models, we argue that this makes predicting the solar cycle using the output from such models impossible.Comment: 22 Pages, 5 Figures, Preprint accepted for publication in Ap

    Dual contribution to amplification in the mammalian inner ear

    Full text link
    The inner ear achieves a wide dynamic range of responsiveness by mechanically amplifying weak sounds. The enormous mechanical gain reported for the mammalian cochlea, which exceeds a factor of 4,000, poses a challenge for theory. Here we show how such a large gain can result from an interaction between amplification by low-gain hair bundles and a pressure wave: hair bundles can amplify both their displacement per locally applied pressure and the pressure wave itself. A recently proposed ratchet mechanism, in which hair-bundle forces do not feed back on the pressure wave, delineates the two effects. Our analytical calculations with a WKB approximation agree with numerical solutions.Comment: 4 pages, 4 figure

    Numerical computation of rare events via large deviation theory

    Get PDF
    An overview of rare events algorithms based on large deviation theory (LDT) is presented. It covers a range of numerical schemes to compute the large deviation minimizer in various setups, and discusses best practices, common pitfalls, and implementation trade-offs. Generalizations, extensions, and improvements of the minimum action methods are proposed. These algorithms are tested on example problems which illustrate several common difficulties which arise e.g. when the forcing is degenerate or multiplicative, or the systems are infinite-dimensional. Generalizations to processes driven by non-Gaussian noises or random initial data and parameters are also discussed, along with the connection between the LDT-based approach reviewed here and other methods, such as stochastic field theory and optimal control. Finally, the integration of this approach in importance sampling methods using e.g. genealogical algorithms is explored

    Quantum states far from the energy eigenstates of any local Hamiltonian

    Full text link
    What quantum states are possible energy eigenstates of a many-body Hamiltonian? Suppose the Hamiltonian is non-trivial, i.e., not a multiple of the identity, and L-local, in the sense of containing interaction terms involving at most L bodies, for some fixed L. We construct quantum states \psi which are ``far away'' from all the eigenstates E of any non-trivial L-local Hamiltonian, in the sense that |\psi-E| is greater than some constant lower bound, independent of the form of the Hamiltonian.Comment: 4 page
    corecore